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8, skr. poczt. 137, PL 00–172 Warszawa, Poland and Département de
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2. (Non–weighted) Hölder spaces on the compactified manifold 62
3. Weighted Sobolev spaces 70

Chapter 7. The Lichnerowicz equation. 79
1. Introductory remarks 79
2. The linearized equation 80
3. Existence of solutions of the non–linear problem 83
4. Regularity at the boundary of the solutions 86

Appendix A. Genericity of log-terms. 93
1. The vector constraint equation 93
2. The coupled system 97

Appendix B. 101
1. “Almost Gaussian” coordinates. 101

Appendix. Bibliography 103

Index 105

Appendix. Index 107

iii



Abstract

We prove existence of the solutions of the constraint equations satisfying “hy-
perboloidal boundary conditions” using the Choquet–Bruhat—Lichnerowicz—York
conformal method and we analyze in detail their differentiability near the conformal
boundary. We show that generic “hyperboloidal initial data” display asymptotic
behaviour which is not compatible with Penrose’s hypothesis of smoothness of J( .
We also show that a large class of “non–generic” initial data satisfying Penrose
smoothness conditions exists. The results are established by developing a theory
of regularity up–to–boundary for a class of linear and semilinear elliptic systems of
equations uniformly degenerating at the boundary.
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CHAPTER 1

Introduction

A couple of years ago the first semi–global (i.e., global to the future of the initial
data hypersurface) existence theorem in general relativity was proved by Friedrich
[35], for a class of “small” initial data satisfying some asymptotic conditions (cf.
[22] for a different class of “small” data results). An important problem related to
Friedrich’s theorem remained open: it was not clear “how many” initial data sat-
isfying the required “hyperboloidal” asymptotic conditions existed. The classes of
metrics which were known to satisfy the appropriate asymptotic conditions (cf. e.g.
[12] for a review of previous work on this subject), namely the boost–rotation sym-
metric space–times and the Robinson–Trautman space–times (cf. also [67]) were of
a rather special kind, and semi–global existence results have been proved for these
space–times by different methods [13, 23]. More recently, a new class of space–
times satisfying the hyperboloidal asymptotic conditions has been constructed by
Friedrich [34], using a clever trick of “exchanging io with i±”, it is, however, still
unclear how large a class of metrics can be obtained in this way, especially since
the space–times constructed in [34] are analytic.

In [6] in collaboration with H. Friedrich we have constructed a large class of
“hyperboloidal” initial data using the conformal Choquet–Bruhat—Lichnerowicz
—York method under the assumption of smooth background fields and of pure–
trace extrinsic curvature of the initial data hypersurface. In this work we gener-
alize the results of [6] in two directions: We construct solutions of the constraint
equations with an extrinsic curvature tensor which is not pure–trace. Moreover
only a finite degree of differentiability of the “background fields” is assumed. We
analyze exhaustively the asymptotic regularity of the fields thus constructed in the
“asymptotically hyperboloidal” setting. We show that for generic “backgrounds”
the Cauchy data constructed by the conformal method starting from a “conformally
smoothly compact” Riemannian manifold will not possess the asymptotic regularity
compatible with Penrose’s smoothness requirements for J( . On the other hand, we
also show that there exists a large class of non–generic “backgrounds” for which
the solutions will display the required regularity.

We shall analyze the asymptotic behaviour of the solutions of the constraint
equations under various differentiability conditions on the “background” metric on
the conformally compactified manifold. We wish to stress that the issue of the
differentiability hypotheses is not an academic one, because “physical” fields are
obtained by an infinite stretching of the “unphysical” ones and thus imposing too
strong differentiability conditions at the conformal boundary may result in a set–up
inadequate for describing sufficiently general physical situations; some indications
that it might be unrealistic to expect smoothness at the conformal boundary in
generic situations may be found in [22, 21, 70, 26] (cf. e.g. [27] for a review of
previous results on this subject). To obtain a real understanding of the behaviour
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4 1. INTRODUCTION

of the gravitational field at null infinity it clearly is necessary to establish what
asymptotic conditions are appropriate from a physical point of view. One might
try to put forward various criteria which might be considered as physically desirable:

((i)) existence of a local in time evolution of the data,
((ii)) existence of a notion of total energy
((iii)) and finiteness thereof,
((iv)) existence of a notion of angular momentum
((v)) and finiteness thereof,
((vi)) existence of a development (4M, γ) of the initial data set which admits a

J( (incomplete, half–complete (i.e. complete in one time–direction only)
or complete ?) of some differentiability class (C0(4M̄), C2+λ(4M̄),
C3(4M̄), H6(4M̄ ∩ 3M̄), C∞(4M̄) ?)

((vii)) existence of a development of the data up to i+,
((viii)) one might wish to add the requirement that the function spaces con-

sidered include those data sets which arise by evolution from generic
initial data which are asymptotically flat at spatial infinity, and finally

((ix)) one might ask for various mixtures of the above.
C8(3M̄) ⊕ C6(3M̄) differentiability of (g,K) after compactification together with
the vanishing of “shear of the conformal boundary” guarantee that most of the
requirements (i)–(vii) are satisfied [5]. Recall that Friedrich’s theorem, as applied in
[5], guarantees, loosely speaking, a) an incomplete J( for general C8(3M̄)⊕C6(3M̄)
data as above, and b) a half–complete J( for those such data which are close enough
to the Minkowski data in C8(3M̄)⊕ C6(3M̄) norm. Of course, one has the known
angular momentum ambiguities in the BMS group. In any case, point (viii) is not
known to hold. We would like to emphasize that it is not known what degree of
differentiability up to the conformal boundary is a necessary condition1 for any of
criteria (ii)–(viii) to hold in generic situations. Let us note that given initial data
(3M, g,K) (satisfying the, say vacuum, constraint equations) with (g,K) locally
in Hk(3M̄) ⊕ Hk−1(3M̄), k > 5/2, there exists a vacuum developement (4M, γ)
regardless of any asymptotic behaviour of the fields (this follows from the results
of [48] by causality arguments as presented, e.g., in [43]). Moreover requirements
of maximality and global hyperbolicity render (4M, γ) unique, at least when k is
large enough2. It follows that perhaps the most fundamental criterion (i) above
imposes no restrictions on the asymptotics at the conformal boundary. For this
reason we have found it of interest to construct Cauchy data for which there exists
a conformal compactification in some sense, under conditions which arise naturally
from the mathematical analysis of the problem. We are planning to investigate the
problem of weakest possible hypotheses on the asymptotic behaviour of (g,K) for
criteria (ii)–(vi) in the future.

It should be emphasized that we construct initial data sets which admit confor-
mal compactifications of various degree of differentiability, leaving aside the problem
of compactifiability of the Cauchy developments thereof (criterion (vi) above). Un-
der the condition that the “background fields” used to construct the Cauchy data

1This should be contrasted with some of the results concerning space–times asymptotically
flat at spacelike infinity, where e.g. sharp results are known for the well–posedness of the notion

of energy–momentum, etc.
2cf. [17] in the smooth case, and [43] for a reasonably complete proof for k ≥ 4; for k > 5/2

this has been claimed essentially without proof in [20].
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are in, say, C∞(3M̄) we show that the resulting Cauchy data set is generically in
C2+λ(3M̄), λ ∈ (0, 1), but not in C3(3M̄). However, we also show that there ex-
ists a “big” (infinite–dimensional) subset of non–generic smooth background fields
such that the resulting Cauchy data are smoothly compactifiable. It follows from
the Penrose’s vanishing Weyl curvature theorem [64] that only a small subset (still
infinite dimensional) of the above smoothly compactifiable Cauchy data will give
rise to a space–time with a smooth J( (cf. [6] for some results concerning this prob-
lem in the pure trace extrinsic curvature case, and [5] in the general case). One
can envisage the possibility that the existence of any kind of compactification of
the space–time necessarily leads one to, say, Ck(3M̄) compactifiable hyperboloidal
initial data sets only with some k ≥ 3, though this seems rather unlikely to the
authors.

To deal with the problem of regularity at the conformal boundary we had to
introduce a large number of function spaces, probably more than seems reasonable
at first sight: we wish to argue that this is not the case. As usual in PDE problems
the appropriate function spaces are Hölder– and Sobolev– type spaces: to capture
decay of the solutions one has to consider weighted versions of those. The motiva-
tion for considering various Sobolev–type weighted spaces, as e.g. xαW p

k , is their
appropriateness for studying the evolution of the initial data, a problem which we
plan to consider in the future. On the other hand Hölder–type weighted spaces
xαCk+λ are intuitively more transparent, and the results in these spaces are easier
to understand for non–experts; these spaces also seem to be somewhat better suited
for proving results which can be used to draw conclusions about the interesting case
of a smooth–up–to–boundary background — this is especially apparent in the case
of the vector constraint equation. Cαk+λ (6= xαCk+λ!) and Wα;p

k (6= xαW p
k !) arise as

spaces on which the operators we consider are isomorphisms, for appropriate ranges
of the exponents α. It turns out that for some critical values µ± of the exponent
α the solutions of the equations we consider “pick up” log terms, even though the
source term did not have any. Since in the non–linear problem we need to iterate
the results of the linear theory, we are forced to consider equations where the log
weighted terms appear as sources: this leads us to introduce the spaces Cα,βk+λ and
Wα,β;p
k of functions weighted by a factor xα| log x|β . The “conormal–type” spaces

xαCk+λ|m appear naturally when investigating in more detail the behaviour of the
solutions near the boundary. Finally the spaces Aphg of “polyhomogeneous” func-
tions are the spaces to which solutions of the equations considered here belong, in
the case of smooth coefficients and smooth sources.

This paper is organized as follows: in Section 1 we briefly introduce the “hyper-
boloidal initial data problem”; for the sake of the reader interested mainly in the
C∞ case we state in detail our main existence and regularity theorems under the
hypothesis of a smooth background; results under various different differentiability
hypotheses are stated in detail and proved in chapters 6 and 7. In Section 2 we
shortly mention some generalizations of our results from the vacuum case to the
case of matter fields. In Chapter 3 we establish our notations, describe the various
function spaces, and prove or review some function–analytic results. Lemma 3.1
and Corollary 3.2 proved in Section 3 turn out to be very useful in our applications;
we believe that these results are new.

In Chapter 4 various results concerning the regularity near the boundary are
proved for a class of “edge–type” (cf. [58]) linear operators. More precisely, we
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consider elliptic systems of equations, with the ellipticity constants degenerating
in a uniform way near the boundary, cf. eqs. (1.3)–(1.4). The results of that
chapter generalize similar results of Mazzeo [58] because we do not need to assume
smoothness of the “background” metric; the methods seem also to be rather simpler
than those of ref. [58] (note, however, that the theory of [58] applies to more general
operators and addresses more issues than what we do here). The main results there
are Theorems 2.6, 2.9, 2.10 and 2.11. Those theorems are stated in a somewhat
abstract form, but we show that their hypotheses are satisfied in the applications
we have in mind. More precisely, Theorems 2.6, 2.9 and 2.10 are used in Chapter
7 to prove (a form of) classical regularity at the boundary of solutions to a class
of scalar equations, cf. Corollary 2.3. Theorem 2.11 is used in Section 3 to prove
(a form of) classical regularity at the boundary for the solutions of the equation
considered there, cf. Theorem 3.11.

In Chapter 1 we prove polyhomogeneity of solutions of some fully non–linear
elliptic equations, under a rather heavy set of hypotheses; these hypotheses are how-
ever satisfied for our (semi–linear) problem at hand, cf. Theorem 4.1 in Chapter 7.
In Chapter 6 we construct classes of solutions of the vector constraint equation un-
der various differentiability and decay conditions. We use two different approaches
to do that; these approaches give the same space of solutions of the vector con-
straint equation in the polyhomogeneous or smooth case. We do not know whether
or not this is true in the finite differentiability case, but we suspect that this is not
the case. In Section 2 the problem is formulated in terms of an equation which
does not degenerate at the boundary. The main results there are Theorems 2.7, 2.8
and 2.10. In Section 3 the problem is formulated in terms of an equation uniformly
degenerating at the conformal boundary, of the type considered in Chapter 4. The
main results there are Theorems 3.8, 3.9, 3.10 and 3.11.

In Chapter 7 solutions of the scalar constraint equation are constructed and
their asymptotic properties are established. More precisely, in Corollary 2.3 we
verify that the hypotheses made in the regularity theory developed in Chapter 4 are
satisfied for Laplace–type scalar equations uniformly degenerating at the boundary.
In Proposition 3.1 we prove existence of solutions to a class of semilinear equations
uniformly degenerating at the boundary. Existence of solutions of the Lichnerowicz
equation, Theorem 3.2, is a corollary of this result. As already mentioned above,
in Theorem 4.1 we apply the results of Chapter 1 to prove polyhomogeneity of
solutions to a class of semi–linear equations; the Lichnerowicz equation is again a
special case of the equations considered in Theorem 4.1 (cf. Corollary 4.2). The
finite differentiability counterpart of Theorem 4.1 is Theorem 4.5, which is perhaps
the main result of this paper. Theorem 4.7 is a specialization of Theorem 4.5 to the
case of the Lichnerowicz equation. In Appendix A we prove that log terms arise
generically in the solutions of the constraint equations constructed by our method.
The main results there are Theorems 2.2 and 2.3. Finally, in Appendix B we show
how to construct coordinate systems near the boundary ∂M of M which, for many
purposes, are as useful as Gauss coordinates, and in which no differentiability of the
metric is lost3. This result is a rather straightforward application of the extension
results proved in Section 3. Due to the large number of function spaces involved,

3Recall that one loses two degrees of differentiability of the metric when going to Gauss

coordinates.



1. INTRODUCTION 7

for the convenience of the reader we have included an index (both for terminology
and for notation) at the end of the paper.

There is a non–empty intersection between some of our results and those of refs.
[42, 57, 58, 59, 60], some similar methods have been used in [42]. Some of the
arguments we use are standard for this type of problems: we believe, however, that
the overall approach4 is new. Our methods involve only elementary techniques —
scaling, commutation, difference quotients, and an analysis of properties of solutions
of an ODE (with parameters). A key for a relatively simple proof of boundary
regularity is an extension technique for extending finitely differentiable functions on
the boundary to locally smooth functions defined on the whole manifold, cf. Section
3. The method is somewhat reminiscent of that used by Hörmander [45, Vol. III,
Appendix B] in a Sobolev spaces setting. It must however be admitted that the
proofs of our main results are somewhat complicated: the intricacies arise mainly
from the finite differentiability hypotheses, and from rather general hypotheses on
α, α±, µ± (cf. Chapter 4 for details). The proofs can be considerably simplified if
one assumes smoothness of coefficients and sources (k = ∞; cf. e.g. [6]).

In the case when the conformal background metric is smooth, a special case of
our main results — the boundary regularity of solutions of the Yamabe equation
— has been independently established by R. Mazzeo [59] using quite different
techniques5. See also [32, 62] for some related results; cf. [54] for a survey of
the Yamabe problem on compact manifolds and cf. [65] and references therein for
some results about the Yamabe problem with non–constant prescribed curvature.

Acknowledgements: P.T.C. is grateful to N. Trudinger and to the members
of the Centre for Mathematics and its Applications of the Australian National
University for their friendly hospitality during a significant part of work on this
paper. Useful discussions with J. Jezierski, G.  Lysik, R. Mazzeo and B. Ziemian
are acknowledged. We are grateful to J. Lee for making some of his work [52]
available to us prior to publication, and to Jiseong Park for useful comments about
previous versions of this paper.

4Once most of this paper was written we have been informed that some of our arguments

are somewhat similar to those of [53]. It should, however, be stressed that most of the work in
this paper is done to handle the finite differentiability hypotheses, while in [53] smoothness of the

coefficients of the equations is assumed.
5It should be pointed out, however, that the work in [59] is done using stronger a–priori

assumptions, cf. [32] for a discussion.





CHAPTER 2

The hyperboloidal initial value problem.

1. Conformal compactifications and Cauchy data

In this section we will recall the basic notions of the conformal framework
introduced by Penrose [64] to describe the behaviour of physical fields at null
infinity.

By a spacetime, we mean a connected C∞ 4-dimensional manifold endowed
with a Lorentzian metric. Given a “physical” space-time (M̂, γ̂) one associates to
it a smooth “unphysical space-time” (M, γ) and a smooth function Ω on M, such
that M̂ is a subset of M and

Ω
∣∣∣
M̂
> 0 , γµν

∣∣∣
M̂

= Ω2γ̂µν , (1.1)

Ω
∣∣∣
∂M̂

= 0 , (1.2)

dΩ(p) 6= 0 for p ∈ ∂M̂ , (1.3)

where ∂M̂ is the topological boundary of M̂ in M. It is common usage in general
relativity to use the symbol J( for ∂M̂, and we shall sometimes do so.

We will use the convention that geometric objects in the physical spacetime M̂
defined w.r.t. the metric γ̂ are decorated with a “̂ ”, for example R̂ denotes the
scalar curvature defined w.r.t. the connection ∇̂ and the metric γ̂.

For simplicity, we will only consider the case when (M̂, γ̂) is vacuum, i.e. R̂µν =
0. In general, this assumption may be replaced by fall–off conditions on the matter
fields. The hypothesis of smoothness of (M, γ,Ω) and the assumption that (M̂, γ̂)
is vacuum imposes severe restrictions on the geometry of (M, γ,Ω). If one defines
(cf. [64])

Pµν = 1
2 (Rµν − 1

6 Rγµν) , (1.4)

with an analogous definition for the quantities defined w.r.t. (M̂, γ̂), one has

0 = P̂µν = Pµν + 1
Ω∇µ∇ν Ω− 1

2Ω2 ∇α Ω∇α Ω γµν , (1.5)

where ∇µ is the covariant derivative of the metric γµν . Throughout this paper the
following conventions on curvature are used:

∇α∇βX
γ −∇β∇αX

γ = RγµαβX
µ ,

Rαβ = Rγαγβ , R = Rγγ .

9



10 2. THE HYPERBOLOIDAL INITIAL VALUE PROBLEM.

Note that the signs in (1.5) are opposite to those of ref. [64] because of different
curvature conventions used. Equations (1.2) and (1.5) imply

∇α Ω∇α Ω
∣∣∣
∂M̂

= 0 , (1.6)

(∇µ∇ν Ω− 1
4 ∇

α∇α Ω γµν)
∣∣∣
∂M̂

= 0 . (1.7)

Let M be a spacelike hypersurface with boundary ∂M in (M, γ) and assume that
M ⊂ M̂ and ∂M ⊂ ∂M̂. Then we may write M̄ = M ∪ ∂M so that M̄ is the
topological closure of M in M. Let us stress that M is a spacelike hypersurface
in physical space–time, and this is the only exception to our rule that physically
relevant objects are denoted with a hat. Alternatively, we have M̂ = M , but we
never refer to M̂ , only to M .

Let gij ,Kij , respectively ĝij , K̂ij , be the induced metric and extrinsic curvature
of M in (M, γ), respectively in (M̂, γ̂). If we denote by Lij and L̂ij the traceless
part of Kij = gikgj`Kk`, K̂ij = ĝikĝj`K̂k`,

Lij = Kij − 1
3 K gij , K = gij Kij ,

L̂ij = K̂ij − 1
3 K̂ ĝij , K̂ = ĝij K̂ij , (1.8)

one finds

L̂ij = Ω3 Lij , |L̂|ĝ = Ω |L|g ,
K̂ = ΩK − 3nα Ω,α , (1.9)

where nα is the unit normal to M for the metric γ, and | · |h denotes the tensor
norm in a Riemannian metric h. Since nα is timelike and, by (1.6), ∇Ω(p) is null
for p ∈ ∂M we have

K̂
∣∣∣
∂M

= −3nα Ω,α
∣∣∣
∂M

>< 0 , (1.10)

because the scalar product of two non–vanishing non–spacelike vectors cannot
change sign. From (1.2) we also have

gij

∣∣∣
M

= Ω2 ĝij ,

and since ∇Ω is null non–vanishing at ∂M the equations (1.9)–(1.10) imply

Di ΩDi Ω
∣∣∣
∂M

=

(
K̂

3

)2 ∣∣∣∣
∂M

> 0 , (1.11)

where Di is the Riemannian connection of the metric gij . To summarize, necessary
conditions for an initial data set (M, ĝij , K̂

ij) to arise from an “extended initial
data set (M, gij ,K

ij) intersecting a smooth J( ” are
C1. There exists a Riemannian manifold (M, g) with smooth boundary ∂M

and compact closure M̄ = M ∪ ∂M and a Riemannian metric g on M̄
with g ∈ Ck(M̄) for some k ≥ 2 (cf. Chapter 3 for precise definitions
of function spaces). Moreover there exists a function Ω ∈ Ck(M̄) such
that

gij = Ω2 ĝij , (1.12)

Ω
∣∣∣
∂M

= 0 , |DΩ|g
∣∣∣
∂M

> 0 . (1.13)
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C2. The symmetric tensor field K̂ij satisfies, for some K̂ ∈ Ck−1(M̄) and
Lij ∈ Ck−1(M̄),

K̂ij = Ω3Lij + 1
3K̂ĝ

ij , K̂ = ĝijK̂
ij , (1.14)

K̂
∣∣∣
∂M

is nowhere vanishing . (1.15)

The above conditions are necessary but far from sufficient, cf. [5, 4] for a detailed
discussion. If there existed “a lot” of space-times satisfying the Penrose conformal
conditions, there should exist “a lot” of initial data satisfying C1–C2. It is there-
fore natural to ask the question, can one construct such data sets? This involves
constructing solutions of the scalar constraint equation,

R̂+ K̂2 − K̂ij K̂
ij = 0 , (1.16)

where R̂ denotes the Ricci scalar of the metric ĝ, and the vector constraint equation,

D̂i(K̂ij − K̂ ĝij) = 0 , (1.17)

where D̂ is the Riemannian connection of the metric ĝ, under appropriate as-
ymptotic conditions. No general method of producing solutions of (1.16)–(1.17)
is known, unless one assumes

C3. D̂iK̂ ≡ 0 (1.18)

(cf., however, [18, 50, 28, 14] for some results). Under (1.18) the scalar and
the vector constraint equations decouple, and the well known Choquet–Bruhat —
Lichnerowicz — York conformal procedure [20] allows one to construct solutions of
(1.16)–(1.17). An initial data set satisfying C1–C3 will be called a Ck hyperboloidal
initial data set (smooth if k = ∞), while conditions C1– C2 will be called Penrose’s
Ck conditions. Without loss of generality we may normalize K̂ so that

K̂ = 3 , (1.19)

and (1.16)–(1.17) can be rewritten as

R̂+ 6 = L̂ij L̂
ij (1.20)

D̂i L̂
ij = 0 . (1.21)

To construct solutions of (1.20)–(1.21) one can proceed as follows: fix a Rie-
mannian manifold (M, g) with smooth boundary ∂M and compact closure, and let
x be any defining function for ∂M (by definition,

x
∣∣∣
∂M

= 0 , |dx|g
∣∣∣
∂M

> 0 ,

and x(p) = 0 ⇒ p ∈ ∂M), set
g̃ij = x−2 gij .

Given a smooth traceless symmetric tensor field B̃ij on M satisfying

D̃i(B̃ij) = 0 , (1.22)

where D̃ is the Riemannian connection of the metric g̃, it is not too difficult to
check that the fields

ĝij = φ4g̃ij ,

L̂ij = φ−10B̃ij
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will satisfy (1.20)–(1.21) if

8∆̃φ− R̃φ+ λφ−7 − 6φ5 = 0 , (1.23)

where
λ ≡ |B̃|2g̃ ≡ g̃ij g̃k` B̃

ikB̃j` ,

and where ∆̃ = D̃iD̃i is the Laplacian of the metric g̃ij . If φ and B̃ are smooth up
to boundary and if moreover it holds that

φ
∣∣∣
∂M

= 1 , (1.24)

λ
∣∣∣
∂M

= 0 , (1.25)

then (M, ĝij , K̂
ij) will satisfy C1–C3 (with k = ∞).

Note that (1.25) forces the coordinate components of B̃ik to vanish to third
order at ∂M , in coordinates regular near ∂M . It is therefore natural to introduce
a new tensor field Bij defined as

Bij ≡ x−3B̃ij . (1.26)

It turns out that the condition that φ and B̃ be smooth up to boundary leads to
non–trivial restrictions. One of the main results of this paper is the following (cf.
Corollary 4.2, Chapter 7 and Theorem 2.3 of Appendix A; cf. also [5] for some
related results):

Theorem 1.1. For any smooth (M, gij , x,B
ij) as above there exists a unique

solution of (1.23)–(1.24). Further,
((i)) For given M and x there exists an open dense set (in the C∞(M̄)

topology) of (gij , Bij)’s for which the function φ−2 can be extended
to a C2 function from M to M̄ , but not to a C3 function on M̄ (the
third derivatives of any extension of φ will blow up logarithmically
as one approaches ∂M); in particular for generic (in the above sense)
triples (gij , Bij) the initial data set (ĝij , K̂ij) will display asymptotic
behaviour incompatible with Penrose’s C3 conditions.

((ii)) There exists a “large set” of non-generic (gij , Bij) for which Ω ≡ φ−2 x
satisfies Ω ∈ C∞(M̄).

It should be emphasized that in Theorem 1.1 no hypotheses on the topology of
M , or ∂M̂ are made, thus the resulting space-time may have a conformal boundary
consisting of several connected components of varying topology (recall that e.g.
some Robinson–Trautman space-times admit a smooth J( the “spatial” topology of
which is not a sphere [33, 24]). Let us also note that even considering only those
data sets for which B = 0, or for which Bij vanishes on ∂M to some desired order,
point (i) above will still hold in the sense that for generic g and B’s vanishing to
some prescribed order (or even e.g. identically vanishing) no C3 extensions of φ
from M̂ to M will exist.

To complete the construction of initial data sets one also has to produce solu-
tions of (1.22), the standard approach proceeds as follows: Let Aij ∈ C∞(M̄) be
a smooth trace–free symmetric tensor field and set Ãij = x3Aij . Let Xi solve the
equation

D̃j(D̃iXj + D̃jXi − 2
3
D̃kX

kg̃ij) = −D̃jÃ
ij . (1.27)
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Then the tensor field defined by

B̃ij = Ãij + D̃iXj + D̃jXi − 2
3
D̃kX

kg̃ij (1.28)

will satisfy (1.22).
In Chapter 6 the existence and regularity of solutions to the equation (1.27) is

studied. In fact, in that chapter we present two different methods of constructing
solutions of (1.27). In particular, the following is established:

Theorem 1.2. Let (M, g) be a smooth Riemannian manifold, with boundary
∂M and with compact closure and let x be a smooth defining function of ∂M .
Then, given a trace–free symmetric two–tensor Aij ∈ C∞(M̄), there is a unique
solution Xi to the equation (1.27) of the form

Xi = x2Xi
1 + x4 log(x)Xi

2 ,

Xi
1, X

i
2 ∈ C∞(M̄) .

It should be pointed out that for generic Aij , the source term in (1.27) will be
generic and thus the corresponding solution X will have log terms, consequently
Bij given by (1.26) with B̃ij given by (1.28) will be C1 but not C2 extendible from
M to M̄ . If on the other hand Aij vanishes to order two or higher at the boundary,
then no log terms occur in the solution of (1.27), cf. Appendix A. This condition
is sufficient but not necessary for non–existence of log terms in Xi, cf. e.g. [5] for
details.

In order to obtain initial data which can be used in Friedrich’s stability theo-
rem [35] (cf. also [19] for a somewhat different approach) further restrictions on
(ĝij , K̂ij) are needed, among others the assumption that both the tensor field

eαβ ≡ ∇α∇βΩ− 1
4γ

µν∇µ∇νΩγαβ

and the Weyl tensor Cαβγδ vanish on ∂M . Here eαβ and Cαβγδ are evaluated
formally from the Cauchy data (ĝij , K̂ij) assuming vacuum Einstein equations.
The vanishing at ∂M of the tensor eαβ corresponds to the condition that J( is
“shear free”, cf. e.g. [5]. The vanishing of Cαβγδ on ∂M implies some further
conditions on both Lij and the metric gij . In the case when J( is shear free and
Lij vanishes on ∂M, it turns out [5] that the Weyl tensor vanishes on ∂M precisely
when the restriction of Ω−1Lij to ∂M is proportional to the induced metric on ∂M .

Point 1 of Theorem 1.1 thus shows that generic data constructed by the confor-
mal method will not be regular enough to be used in Friedrich’s existence theorems.
In fact the problem here is much more serious than just being one or two degrees of
differentiability away from a threshold, because one of the fields used in Friedrich’s
“conformally regular system” is dαβγδ ≡ x−1Cαβγδ. Whenever Cαβγδ(p) 6≡ 0 for
p ∈ ∂M̂ , the field dαβγδ blows up at ∂M̂ as 1/x, and is thus not even in L1(M).
It should be stressed that nevertheless point 2 of Theorem 1.1 establishes existence
of a large class of non–trivial data with asymptotic behaviour compatible with the
Penrose–Friedrich conditions.

2. Some remarks on non–vacuum initial data sets

In addition to the vacuum case discussed in Section 1, two matter models have
been studied from the point of view of the “conformal Einstein equations”: The
Einstein – Yang–Mills system has been analyzed in the conformal setting in [36].
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The Einstein – scalar field model, with a massless scalar field “minimally coupled”
to the metric, has been recently studied by P. Hübner [46, 47]. In those last
references P. Hübner has generalized1 Friedrich’s results concerning existence of
time–developments “with a piece of J( ”, or with a semi–global J( , to the scalar field
case. In this section we wish to describe shortly how our results on vacuum initial
data generalize to non–vacuum models.

First, it should be noted that the construction given here for the vacuum, zero
cosmological constant case yields immediately initial data for Einstein equations
with a non–vanishing cosmological constant with the appropriate sign. This requires
only a reinterpretation of what the physical initial data are, once the solutions of
the constraint equations, as described in Section 1, have been obtained. (We have,
however, not analyzed in detail the question, under what conditions the initial
data so obtained will satisfy all the conditions needed for the well posedness of the
evolution problem in the conformal setting; cf. [37, Section 5.1] for partial results
concerning this question.)

Next, let us point out that the results of Chapter 6 clearly allow for the in-
troduction of sources in the vector constraint equation. Similarly, the existence
Theorem 3.2 proved in Chapter 7 holds for rather quite a large class of couplings
of the gravitational field with some matter sources (cf. e.g. [51] for a discussion of
the conformal method for Einsteins equations with matter). In particular, in the
Einstein – Yang–Mills case the scalar constraint equation takes the form

4(n− 1)
n− 2

∆g̃φ− R̃φ+
I∑
i=1

ξiφ
−γi − n(n− 1)φ

n+2
n−2 = 0 , (2.1)

with I = 2, γ1 = 3, γ2 = 7, ξi ≥ 0, n = 3. The method of proof of Theorem 3.2
proves existence of solutions of equation (2.1) satisfying the asymptotic condition
(3.3) when the initial data for the Yang-Mills field are suitably behaved, cf. also
Theorem 3.1. Similarly, the arguments of Corollary 4.2, which asserts polyhomo-
geneity of solutions of the Lichnerowicz equation, carry over immediately to the
Einstein – Yang–Mills case, so that if the initial data for the Yang–Mills fields are
smooth or polyhomogeneous on M̄ , then the corresponding solution of the Lich-
nerowicz equation will be polyhomogeneous, cf. Theorem 4.1.

As discussed in the proof of the existence Theorem 3.2, one can always choose
a conformal gauge in which R̃ = −n(n − 1) = −6. Then, as made explicit in the
statement of Proposition 3.1, the existence argument applies to equations of the
form

∆g̃φ+ F (y, φ) = 0 ,
with a large class of functions F . In particular the assertions of Theorem 3.2 hold
in the case of a scalar field ψ minimally coupled to the gravitational field, in the
following sense: For this model, assuming for simplicity that the extrinsic curvature
is pure trace, the Lichnerowicz equation reads

8∆g̃φ+ (6− κ

2
|dψ|2g̃)φ− (6− κ

2
(∇0ψ)2)φ5 = 0 , (2.2)

where ∇0ψ is the derivative of the scalar field ψ in the direction normal to the initial
hypersurface, κ is the gravitational constant and we have assumed that R̃ = −6.

1P. Hübner [46] has also numerically analyzed the evolution problem at Scri for such a
spherically symmetric model. Some related numerical results have been obtained by R. Gómez

and J. Winicour [41]; cf. also M. W. Choptuik [16, 15].
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Suppose that there exists c > 0 such that

6− κ

2
|dψ|2g̃ ≥ c , 6− κ

2
(∇0ψ)2 ≥ c (2.3)

on M̄ , and suppose further that there exist constants C,α > 0 such that

|dψ|2g̃ + (∇0ψ)2 ≤ Cxα

for x small enough. Then Proposition 3.1 together with the arguments of the proof
of Theorem 3.2 guarantees existence of a solution φ of (2.2) satisfying the asymptotic
boundary condition (3.3). (Here any sufficiently small constant can be used as the
constant C− of Proposition 3.1, and any sufficiently large constant can be used as
the constant C+ of that Proposition.) This, together with the analysis of [63] proves
existence of solutions of the scalar constraint equation with appropriate asymptotic
conditions for a large class of couplings of the scalar field ψ to the gravitational
field, in particular for the conformally invariant coupling. The arguments which we
present in Chapter 7 can be used to infer further regularity properties of φ. More
precisely, if the initial data for the scalar field decay at ∂M and are smooth (or
polyhomogeneous) on M̄ , then the corresponding solution φ of the Lichnerowicz
equation will be polyhomogeneous. Let us also mention that (2.3), which is needed
in our existence proof, is not needed for the regularity argument to go through.





CHAPTER 3

Definitions, Preliminary Results.

1. Function spaces

Let M be a smooth, paracompact, Hausdorff, n-dimensional manifold with
compact smooth boundary ∂M . We will denote by M̄ = M ∪ ∂M the closure of
M . Unless otherwise indicated, M̄ is not assumed to be compact. Note that with
these conventions M is open.

Throughout this paper x will denote a defining function for ∂M , i.e. a smooth
(up to boundary) function satisfying x

∣∣
∂M

= 0, x ≥ 0, |dx|g
∣∣
∂M

> 0, and the
implication x(p) = 0 ⇒ p ∈ ∂M holds. The symbol i∂M denotes the natural
embedding of ∂M in M̄ , i∂M : ∂M → M̄ .

We can always choose a finite number of coordinate charts

φi : Oi → Rn,+ ≡ {y ∈ Rn : y1 ≥ 0} , i = 1, . . . , I ,

covering a neighbourhood of ∂M such that
((i)) y1 = x.
((ii)) φi(Oi) = [0, x0)× Ui, for some Ui ⊂ Rn−1, 0 < x0 ≤ 1.
((iii)) The transition functions φ−1

i ◦ φj are x-independent.
((iv)) For every p ∈

⋃I
i=1 Oi such that x(p) < x0

2 there exists i(p) such that
the coordinate ball B

(
p, x(p)2

)
centered at p of radius x(p)/2 is contained

in Oi(p).
The symbol ∂Ω will always denote the topological boundary of the set Ω: ∂Ω ≡

Ω̄ \Ω, where Ω̄ is the closure of Ω.
◦
Ω will sometimes be used to denote the interior

of Ω. We set ∂̃Ω ≡ ∂Ω \ ∂M . We shall write Ω′⊂⊂Ω if Ω̄′ ⊂ Ω.
For 0 < σ ≤ x0 we set Mσ = {p ∈ M : 0 < x(p) < σ}, CMσ = M\M̄σ ≡ {p ∈

M : x(p) > σ}. We thus have ∂̃Mσ = {p ∈M : x(p) = σ}, ∂Mσ = ∂̃Mσ ∪ ∂M . For
0 < σ < ρ ≤ x0 we also define Mσ,ρ ≡ {p ∈ M : σ < x(p) < ρ}. Decreasing x0 if
necessary we may assume that for 0 < σ ≤ x0 the sets ∂̃Mσ are smooth manifolds.

When referring to coordinates on Mx0 we shall implicitly assume that points
(i)–(iv) above hold; we shall use the letter v to denote the coordinates y2, . . . , yn;

vA = yA , A = 2, . . . , n .

Thus
y = (x, v) .

Using the above coordinate system, we shall often identify functions on ∂M with
functions on Mx0 , or on M̄x0 , similarly for tensors, etc. If useful in the context,
functions f on ∂M can also be extended to functions on M by assigning to f the
function φ(x/x0)f(v), where φ ∈ C∞(R) is any function satisfying φ(x) ∈ [0, 1],
φ(x) = 1 for x ∈ [0, 1/2], supp(φ) ⊂ [−1, 1], where here and throughout supp(f)

17
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denotes the support of f . Sometimes it is, however, useful to use better behaved
extensions of f to M , cf. Lemma 3.1 and Corollary 3.2.

The standard Schwartz multi-index notation is used throughout, thus if α =
(α1, . . . αn), then |α| =

∑n
i=1 αi denotes the length of α and

∂α = ∂αy = ∂α1
y1 · · · ∂αn

yn = ∂α1
x ∂α2

y2 · · · ∂αn
yn = ∂α1

x ∂βv ,

where β = (α2, . . . , αn). Further, we will write (x∂y)α = x|α|∂αy .
N denotes the set of natural numbers, N = {1, 2, . . . }, N0 = N ∪ {0}, N∞ =

N ∪ {∞}, N∞0 = N0 ∪ {∞}. An integer, without further qualification, is taken to
be a number in N0. However, sometimes integers are defined as numbers in N. For
this reason when talking about an integer in N0 we shall indicate this explicitly,
whenever the distinction matters and ambiguities are likely to occur.

Let F1, F2 be two function spaces. f will be said to belong to F1 + F2 if there
exist functions fi ∈ Fi, i = 1, 2, such that f = f1 + f2.

1.1. (Non–weighted) Hölder spaces. Let Ω be an open subset of M . For
k ∈ N0 the spaces Ck(Ω), Ck+λ(Ω) are the spaces of k times differentiable functions
on Ω; and in the Ck+λ(Ω) case the derivatives of order k satisfy a Hölder continuity
condition with exponent λ ∈ (0, 1]. To emphasize the local character of the spaces
Ck+λ(Ω) we shall sometimes write C loc

k+λ(Ω) for Ck+λ(Ω), whenever confusion is
likely to occur. Following standard notation, (cf. e.g. [1]), for k ∈ N0 the symbol
Ck(Ω̄) denotes the space of those functions in Ck(Ω) the derivatives of which up
to order k can be extended by continuity to continuous functions on Ω̄; we equip
Ck(Ω̄) with the supremum norm. The spaces Ck(Ω̄), Ck+λ(Ω̄) are the spaces of
functions differentiable k-times on Ω and equipped with the supremum norm; and
in the Ck+λ(Ω̄) case the derivatives of order k satisfy a uniform Hölder continuity
condition with exponent λ ∈ (0, 1]. For λ > 0 we have Ck+λ(Ω̄) = Ck+λ(Ω̄), where
Ck+λ(Ω̄) is defined in the usual way as in e.g. [1]; however Ck(Ω̄) 6= Ck(Ω̄) in
general, because functions in Ck(Ω̄) do not necessarily extend to the boundary of Ω
together with all derivatives: In particular C0(Ω̄) 6= C(Ω̄), where C(Ω̄) is the usual
space of continuous functions on Ω̄ (an example is given by the function sin(1/x)
which is in C0(M̄x0), while it is not in C(M̄x0)). Our notation in which the differen-
tiability index is put “downstairs” is mainly motivated by the fact that it is natural
to put “upstairs” those indices which correspond to fall–off properties of functions
near ∂M . As shown in the above discussion, this convention on the differentiabil-
ity index also helps to avoid a possible confusion between the spaces Ck(M̄) and
Ck(M̄). Note also that a function in Ck(Ω) or Ck+λ(Ω) is not necessarily bounded
up to the boundary ∂Ω, as opposed to a function in Ck(Ω̄) or Ck+λ(Ω̄). C

◦

k(Ω),
C
◦

k+λ(Ω), etc., denotes the space of Ck, Ck+λ, etc., functions on Ω which vanish
in a neighbourhood of ∂Ω. When λ = 1 the space Ck+λ will always be denoted by
“Ck+λ, λ = 1”, to avoid possible confusions with the space Ck+1. “Ck+λ, λ = 0”
will sometimes be used to denote the space Ck, similarly for “Cα,βk+λ, λ = 0” (the
spaces Cα,βk+λ are defined below), etc. We set C∞(Ω̄) ≡ ∩kCk(Ω̄).

From the Whitney extension theorem (cf. e.g. [40, Lemma 6.37]) any f ∈
Ck+λ(M̄), λ ∈ (0, 1] can be Ck+λ extended across ∂M ; this is however not neces-
sarily so if f ∈ Ck(M̄) (λ = 0).
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1.2. Weighted Hölder spaces. Let Ω be an open subset of M . For α, β ∈ R
and k ∈ N0 we denote by Cα,βk (Ω) the space of those functions in Ck(Ω) for which
the norm

‖f‖Cα,β
k

(Ω) = ‖f‖
Ck(Ω\Mx0/2)

+ sup
0≤|γ|≤k

(x,v)∈Ω∩Mx0

(1 + | lnx|)−β x−α+|γ| |∂γf(x, v)|

is finite. For λ ∈ (0, 1] we denote by Cα,βk+λ(Ω) the space of those functions in
Cα,βk (Ω) for which the norm

‖f‖Cα,β
k+λ

(Ω) = ‖f‖Cα,β
k

(Ω) + ‖f‖
Ck+λ(Ω\Mx0/2)

+ sup
y∈Mx0∩Ω
|γ|=k

sup
y′∈B

(
y,

x(y)
2

)
∩Ω

y′ 6=y

(1 + | lnx|)−β x−α+k+λ |∂γf(y)− ∂γf(y′)|
|y − y′|λ

is finite. We set Cαk+λ(Ω) = Cα,0k+λ(Ω). Although we shall generally avoid such a no-
tation, we shall occasionally write Cαk , Cαk+λ, Ck, Ck+λ, etc., for Cαk (M), Cαk+λ(M),
Ck(M), Ck+λ(M), when confusion is unlikely to occur. Note that C0

k(M) 6= Ck(M),
C0
k+λ(M) 6= Ck+λ(M), and that for σ > 0 functions in Cα,βk+λ(Mσ) are, together with

their derivatives up to order k, bounded near ∂̃Mσ (i.e. that part of the boundary
of Mσ which does not coincide with ∂M).

Let F be a function space, and let ρ be a function. By ρF we shall denote the
space of functions f such that ρ−1f ∈ F . If F has a norm, we set

‖f‖ρF = ‖ρ−1f‖F .

We have e.g. xα(1 + | log x|2)β/2 C0
k+λ = Cα,βk+λ (this is easily seen by scaling a ball

around (x, v) of radius x/2 to a ball of radius 1/2).
We shall say that f ∈ x∞F if for all i ∈ N, f ∈ xiF .

1.3. Sobolev spaces. For p ∈ [1,∞), Lp(Ω, dµ) denotes the space of µ–
measurable functions defined µ-almost everywhere, the p-th power of which is in-
tegrable on Ω with the measure dµ. dµg will always denote the measure associated
with a Riemannian metric g (in local coordinates, dµg =

√
det gij dy1 . . . dyn). The

symbol Lp(Ω) or Lp will be used to denote Lp(Ω, dµ) when dµ is the Lebesgue
measure dny = dx dn−1v in local coordinates as described at the beginning of this
chapter (or a measure equivalent to it in an L∞ sense, e.g. dµg, where g is a metric
uniformly elliptic in the above coordinates).

Let Ω be an open subset of M , let gij be a metric which is uniformly elliptic
in local coordinates near ∂M , let dµ be a measure on M . For α, β ∈ R, p ∈ [1,∞),

k ∈ N0 we define W p
k (Ω, g, dµ) (respectively

◦
W

p
k(Ω, g, dµ)) as the completion of

C
◦

∞(M) (respectively of C
◦

∞(Ω)) in the norm

‖f‖p
Wp

k
(Ω,g,dµ)

=
∑

0≤`≤k

∫
Ω

(
|D`f |g

)p
dµ ,

where D is the Riemannian connection of the metric g, and | |g denotes the norm
of a tensor with respect to the metric g. We shall sometimes write W p

k (Ω) for
W p
k (Ω, g, dµ) when dµ is uniformly equivalent to the Lebesgue measure in local

coordinates near the boundary, as described at the beginning of this chapter. We
shall say that f ∈W p,loc

k (Ω, g, dµ) if f ∈W p
k (Ω′, g, dµ) for all Ω′⊂⊂Ω. Similarly we



20 3. DEFINITIONS, PRELIMINARY RESULTS.

defineWα,β;p
k (Ω, g, dµ) (respectively

◦
W

α,β;p
k (Ω, g, dµ)) as the completion of C

◦

∞(M)
(respectively of C

◦

∞(Ω)) in the norm

‖f‖p
Wα,β;p

k
(Ω,g,dµ)

=
∑

0≤`≤k

∫
Ω

(
x−α+`(1 + | lnx|)−β |D`f |g

)p
dµ .

Note that if the metric g is in Ck(M̄), then in local coordinates we have

0 ≤ |γ| ≤ k

∫ x0

0

dx

∫
dv
(
x−α+|γ|(1 + | lnx|)−β |∂γy f |

)p ≤ C‖f‖p
Wα,β;p

k
(Mx0 ,g,dµg)

,

for some (f -independent) constant C. The space Wα,β;p
k (Ω, g, x−ndµg) will some-

times be denoted by Wα,β;p
k (Ω, g), similarly

◦
W

α,β;p
k (Ω, g) ≡

◦
W

α,β;p
k (Ω, g, x−ndµg),

Wα;p
k ≡Wα,0;p

k etc. We shall also write Lα,β;p for Wα,β;p
0 .

The inclusion of the factor x−n in the definition of Wα,β;p
k (M, g) has the unfor-

tunate consequence that we have Wα,β;p
0 (M, g) = xα+n/p(1+ | lnx|)β Lp(M,dny) 6=

xα(1+ | lnx|β)Lp(M,dny) when g is uniformly elliptic in local coordinates near the
boundary. Even though the latter would seem more natural, this is however more
than compensated by the simplicity of the Hölder inclusion:

Wα,β;p
k (M, g) ⊂ Cα,βk−n/p(M) , 0 < k − n/p 6∈ N (1.1)

(this is easily seen by a scaling argument (cf. e.g. the proof of Lemma 1.1) and the
standard Hölder embedding, cf. also [3]).

If g̃ij = x−2gij , then dµg̃ = x−n dµg, so thatWα,β;p
k (M, g) = Wα,β;p

k (M, g, dµg̃).
For g̃ of this form we shall also define Hα,β

k (Ω, g̃) as the completion of C
◦

∞(M) with
respect to the norm

‖X‖Hα,β
k

(Ω,g̃) =
{ ∑

0≤`≤k

∫
Ω

(
|D̃`X|g̃ x−α(1 + | lnx|)−β

)2
dµg̃

} 1
2

,

where D̃ is the Riemannian covariant derivative operator of the metric g̃; with

Hα
k ≡ Hα,0

k , similarly H
◦ α,β

k (Ω, g̃) is the completion of C
◦

∞(Ω) in this norm. It is
easy to show that for functions

Hα,β
k (M, g̃) = Wα,β;2

k (M, g) ,

this will however not be the case for general tensor fields.

1.4. Nonisotropic function spaces. Let Ω be an open subset of M , let
k,m ∈ N0, λ ∈ [0, 1]. We shall say that f ∈ Ck+λ|m(Ω̄), if f ∈ Ck+λ(Ω̄) ∩
C loc
k+m+λ(Ω) and if for all 0 ≤ i + |γ| ≤ m we have (x∂x)i ∂γv f ∈ Ck+λ(Ω ∩Mx0).

We set

‖f‖Ck+λ|m(Ω̄) = ‖f‖Ck+λ(Ω̄) +
∑

0≤i+|γ|≤m

‖(x∂x)i ∂γv f‖Ck+λ(Ω∩Mx0 ) .

Note that Ck+m+λ(Ω̄) ⊂ Ck+λ|m(Ω̄), Ck+λ|0(Ω̄) = Ck+λ(Ω̄).
Let Ω be an open subset of M . We define Cα,βk+λ,0(Ω) ≡ Cα,βk+λ(Ω), with the

appropriate norm. For µ ∈ (0, 1] we shall say that f ∈ Cα,βk+λ,0+µ(Ω) if f ∈ Cα,βk+λ(Ω)
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and if moreover there exists a constant C such that for 0 ≤ |γ| ≤ k and for all
(x, v), (x, v′) ∈ Ω ∩ {[0, x0)× Ui}, |v − v′| > 0, i = 1, . . . , I, we have∣∣(x∂y)γ(f(x, v)− f(x, v′))

∣∣ ≤ Cxα(1 + | lnx|)β |v − v′|µ .
We define

‖f‖Cα,β
k+λ,0+µ

(Ω) = ‖f‖Cα,β
k+λ

(Ω) + supx−α(1 + | lnx|)−β
∣∣(x∂y)γ(f(x, v)− f(x, v′))

∣∣
|v − v′|µ

,

where the sup is taken over (x, v), (x, v′) ∈ Ω∩{[0, x0)×Ui}, |v−v′| > 0, i = 1, . . . , I,
and 0 ≤ |γ| ≤ k. f will be said to belong to Cα,βk+λ,m+µ(Ω) if f ∈ Cα,βk+λ,0+µ(Ω)
and if for 0 ≤ |γ| ≤ m we have ∂γv f ∈ Cα,βmax(0,k−|γ|+λ),0+µ(Ω ∩Mx0). Note that
if m ≤ k this is equivalent to the condition that for 0 ≤ i + |γ| ≤ m we have
(x∂x)i∂γv f ∈ C

α,β
k−|γ|−i+λ,0+µ(Ω ∩Mx0). We set

‖f‖Cα,β
k+λ,m+µ

(Ω) = ‖f‖Cα,β
k+λ,0+µ

(Ω) +
∑

0≤|γ|≤m

‖∂γv f‖Cα,β

max(0,k−|γ|+λ),0+µ
(Ω∩Mx0 ) ,

and we define Cαk+λ,m+µ(Ω) ≡ Cα,0k+λ,m+µ(Ω), with the obvious norm.
Although they will not be used any further, we would like to point out that the

following spaces of functions arise rather naturally in the context of the problems
considered here: Let k,m ∈ N0 and λ, µ ∈ (0, 1] be such that m+ µ ≤ k+ λ. Then
f ∈ C loc

k+λ(Ω) will be said to belong to Aα,βk+λ,m+µ(Ω) if the norm defined by

‖f‖Aα,β
k+λ,m+µ

(Ω) = ‖f‖Cα,β
k+λ,m

(Ω) + sup
‖f(x, v + z)− f(x, v)‖Cα,β

k+λ−µ,m
(Ω∩Mx0 )

|z|µ

is finite. Here the supremum is taken over z ∈ Rn−1 such that

(x, v), (x, v + z) ∈ φi(Ω ∩ Oi), |z| > 0 .

[Strictly speaking, f(x, v+z)−f(x, v) is not a function on M , so that the expression
‖f(x, v + z)− f(x, v)‖Cα,β

k+λ−µ,m
(Ω∩Mx0 ) above has to be understood in the sense of

coordinate patches in the obvious way. Alternatively one could use the difference–
quotients construction of the beginning of Chapter 4.] Indeed, the spaces Aα,βk+λ,m+µ

possess better interpolation properties than the spaces Cα,βk+λ,m+µ. While the use
of the latter spaces introduces some complications in some of our arguments, some
other arguments get simpler. Moreover, one can prove an isomorphism theorem in
the Aα,βk+λ,m+µ spaces similar to Theorem 2.1; this is not the case in the Cα,βk+λ,m+µ

spaces. There are, however, no essential overall simplifications gained in the proof
by the usage of the Aα,βk+λ,m+µ spaces. Further, the results for Cα,βk+λ,m+µ spaces are
somewhat more general than those in the Aα,βk+λ,m+µ spaces, the latter being proper
subsets of the former. For those reasons we have decided to use the Cα,βk+λ,m+µ

spaces in our constructions.

Proposition 1.1 (Taylor formula). Let f ∈ Ck+λ(M̄x0), λ ∈ (0, 1]. There
exist functions fi, ri, i = 0, . . . , k, such that for 0 ≤ ` ≤ k we have

f =
∑̀
i=0

fix
i + r` ,

fi ∈ Ck−i+λ(∂M) ,
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∀ 0 ≤ i ≤ ` ∂ixr` ∈ x`−i Ck−`+λ(M̄x0) ∩ x`−i+λC0|k−`(M̄x0) , (1.2)

Proof: We have fi(v) = 1
i! ∂

i
x f(0, v), r0 = f(x, v)− f(0, v), and for ` ≥ 1

r` =
∫ x

0

dx1

∫ x1

0

dx2 . . .

∫ x`−1

0

dx`
(
∂`xf(x`, v)− ∂`xf(0, v)

)
. (1.3)

For 0 ≤ i ≤ ` the property ∂ixr` ∈ x`−i Ck−`+λ is established by straightforward
estimations, ∂ixr` ∈ x`−i+λ C0|k−` follows from a change of variables xi → si given
by xi = xs1 . . . si:

∂ixr` = x`−i
∫ 1

0

ds1 . . .

∫ 1

0

ds`−i

[
s`−i−1
1 s`−i−2

2 · · · s`−i−1

(
∂`xf(s1 · · · s`−ix, v)−∂`xf(0, v)

)]
.

2

Let F be a function space over a set Ω, let B be a tensor bundle over Ω. A
tensor field X = (XA

β), where A, β are some multi-indices, |A| = r, |β| = s, will
be said to belong to ΓF (B) if in local coordinates as described at the beginning of
this chapter the components XA

β of X are in F . Whenever confusion is unlikely
to occur we shall write X ∈ F rather than X ∈ ΓF (B). Let us note that for tensor
fields X ∈ Cα,βk... or X ∈ Wα,β;p

k... (M, g), k > n/p, where g is a metric uniformly
elliptic in local coordinates near ∂M , the decay index α, β always corresponds to
the decay of |X|g in our notation, cf. (1.1). This, in turn, corresponds to the
behaviour of the components of X in the naturally preferred coordinate systems
near ∂M , as discussed at the beginning of this chapter. It should be pointed out
that this is not true for X ∈ Hα

k (M, g̃) unless X is a function (cf. the beginning of
Section 3).

1.5. Polyhomogeneous functions. Let fi be a sequence of functions, fi ∈
C∞(M), such that for every N ∈ N and for all |α| ≤ N we have∣∣∂αy fi∣∣ ≤ Ci,Nx

si ,

for some sequence si →i→∞ ∞ and some constants Ci,N . We shall write

f ∼
∞∑
i=0

fi

if for every n,m ∈ N there exists N ∈ N and a constant C(n,m) such that for
0 < x ≤ x0 and for all |α| ≤ m∣∣∣∣∂αy(f − N∑

i=0

fi

)∣∣∣∣ ≤ C(n,m)xn .

Let I ∈ N∞0 , let the sequence {(si, {Nij}∞j=0)}Ii=0, si ∈ R, Nij ∈ N0, satisfy
si+1 > si. f will be said to be polyhomogeneous, f ∈ A{(si,Nij)}I

i=0 , if there exists
a sequence of functions fijk ∈ C∞(M̄) such that, for 0 < x ≤ min(x0,

1
2 ),

f ∼
I∑
i=0

∞∑
j=0

Nij∑
k=0

fijk x
si+j lnk x . (1.4)

We set A{si}I
i=0 ≡ ∪{Nij}A{(si,{Nij})}I

i=0 , Aphg ≡ ∪si,IA{si}I
i=0 . In what follows we

shall need the following Lemma, the proof of which is a straightforward generaliza-
tion of the proof of Borel’s Lemma (cf. e.g. [45, Volume 1]):
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Lemma 1.2 (Borel Lemma). Let I ∈ N∞0 , {(si, {Nij}∞j=0)}Ii=0, si ∈ R, Nij ∈
N0, with si+1 > si, suppose that f̃ijk ∈ C∞(∂M), let fijk ∈ C∞(M̄) be any
functions such that (fijk − f̃ijk)

∣∣
Oijk

= 0, for some neighbourhoods Oijk ⊂ ∪iOi of
∂M . (Here the sets Oi are as defined at the beginning of this Chapter, and the fijk’s
have been extended to the neighbourhood ∪iOi of ∂M by setting ∂fijk/∂x = 0 in
some coordinate system as considered at the beginning of this Chapter.) There
exists a function f ∈ Cs0,N00

∞,∞ ∩ Aphg such that (1.4) holds. If Nij = 0,∀i, j, then
f ∈ C∞(M̄).

2. Some embeddings

Proposition 2.1. Suppose that Ω = M , or Ω = Mτ , 0 < τ ≤ x0, let f ∈
xα Ck+λ|m(Ω̄).

((i))

0 ≤ |β1| ≤ m, 0 ≤ |β2| ≤ k ∂β1+β2
v f ∈ xα Ck−|β2|+λ|m−|β1|(Ω̄) .

(2.1)

((ii)) Let g ∈ xα1 Ck1+λ1|m1(Ω̄), then

gf ∈ xα+α1 Ck2+λ2|m2(Ω̄) , (2.2)

where ∗2 = min(∗, ∗1), ∗ = k,m, λ, in particular

g ∈ xα1 Ck+m+λ(Ω̄) ⇒ fg ∈ xα+α1 Ck+λ|m(Ω̄) . (2.3)

Suppose that Ω = M , or Ω = Mτ , 0 < τ ≤ x0, let f ∈ Cα,βk+λ,m+µ(Ω).

((iii))

0 ≤ |γ| ≤ k (x∂y)γf ∈ Cα,βk−|γ|+λ,min(m,k−|γ|)+µ(Ω) . (2.4)

((iv))

0 ≤ |γ| ≤ m ∂γv f ∈ C
α,β
max(0,k−|γ|+λ),m−|γ|+µ(Ω) . (2.5)

((v)) Let g ∈ Cα1,β1
k1+λ1,m1+µ1

(Ω), then

fg ∈ Cα+α1,β+β1
k2+λ2,m2+µ2

(Ω) . (2.6)

with ∗2 = min(∗, ∗1), ∗ = k,m, λ, µ, in particular

g ∈ xα1 Ck+λ(Ω) ⇒ fg ∈ Cα+α1,β
k+λ,min(k+λ,m+µ)(Ω) . (2.7)

Proof: All the results here are elementary, let us simply point out that Eq.
(2.1) and (2.5) are a consequence of[

∂αv , ∂
i
x

]
=
[
∂αv , (x∂x)i

]
= 0 ,[

∂ix, (x∂x)j
]

=
∑

0≤`≤j−1 dij` ∂
i
x(x∂x)` ,

with some constants dij`. Equation (2.3) follows from the inclusion

xα1 Ck+m+λ(Ω̄) ⊂ xα1 Ck+λ|m(Ω̄) .

Eq. (2.7) follows from (2.6) and the inclusion

xα1 Ck+λ(Ω̄) ⊂ Cα1
k+λ,k+λ(Ω) .

2
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Proposition 2.2. Let Ω = M , or Ω = Mτ , 0 < τ ≤ x0. The following
inclusions are continuous

((i)) µ, λ ∈ [0, 1], α ≥ 0,

Cα0+µ,0+λ(Ω) ↪→ C0+σ(Ω̄), σ = min(α, µ, λ) . (2.8)

((ii)) µ, λ ∈ [0, 1], α ≥ 0, k, `,m ∈ N0, k − ` ≥ 0

C`+αk+m+µ,k−`+λ(M) ↪→ ∩mi=0x
−iC`+i+σ|k−`(M̄) , σ = min(α, µ, λ) .

(2.9)

((iii)) j ∈ N0

xj Ck+λ|m+j(Ω̄) ↪→ Ck+j+λ|m(Ω̄) . (2.10)

Proof:
(2.10):

f ∈ xj Ck+λ|m+j =⇒ 0 ≤ i+ |γ| ≤ m+ j ∂γv x
i∂ixx

−jf ∈ Ck+λ
=⇒ 0 ≤ i1 + |γ1| ≤ m, 0 ≤ i2 + |γ2| ≤ j ∂γ1v x

i1∂i1x ∂
γ2
v x

i2∂i2x x
−jf ∈ Ck+λ

=⇒ 0 ≤ i1 + |γ1| ≤ m, 0 ≤ i2 + |γ2| ≤ j ∂γ1v x
i1∂i1x ∂

γ2
v ∂

i2
x f ∈ Ck+λ

=⇒ f ∈ Ck+j+λ|m
(2.8): From the inclusion

Cα0+λ,0+µ ⊂ Cα1
0+λ1,0+µ

, 0 ≤ λ1 ≤ λ , α1 ≤ α , (2.11)

it follows that without loss of generality we can suppose f ∈ Cα1
0+λ1,0+µ

, with
0 < α1 ≤ 1, λ1 = min(α1, λ). Let x ≤ y, we have

|f(x, v)− f(y, w)| ≤ A+B ,

A = |f(x, v)− f(y, v)|

B = |f(y, v)− f(y, w)| .
B is estimated in a straightforward way,

B ≤ Cyα1 |v − w|µ ≤ Cx0
α1 |v − w|µ .

To estimate A, suppose first that x ∈ (y/2, y), which leads to

A ≤ Cxα1−λ1 |x− y|λ1 ≤ Cx0
α1−λ1 |x− y|λ1 .

Let now x ∈
[
y/2n+1, y/2n

)
, n ≥ 1; note that

y

2n
≤ y

(
1− 1

2n

)
≤ y − x ≤ y

(
1− 1

2n+1

)
. (2.12)

We have

A = A1 +A2 ,

A1 =
∣∣∣∣f(x, v)− f

(
y

2n
, v

)∣∣∣∣
A2 =

∣∣∣∣f(y, v)− f

(
y

2n
, v

)∣∣∣∣
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and from (2.12) it follows that

A1 = C

(
y

2n

)α1−λ1
∣∣∣∣x− y

2n

∣∣∣∣λ1

≤ C

(
y

2n

)α1−λ1
∣∣∣∣ y

2n+1
− y

2n

∣∣∣∣λ1

= 2−λ1C

(
y

2n

)α1

≤ 2−λ1C|x− y|α1 .

On the other hand∣∣∣∣f(y, v)− f

(
y

2n
, v

)∣∣∣∣ ≤
n−1∑
i=0

∣∣∣∣f( y2i , v
)
− f

(
y

2i+1
, v

)∣∣∣∣ (2.13)

≤ C
n−1∑
i=0

(
y

2i

)α1−λ1
∣∣∣∣ y2i − y

2i+1

∣∣∣∣λ1

(2.14)

=
2−λ1C

1− 2−α

(
1− 1

2nα1

)
yα1 . (2.15)

Recall that for α1 ∈ (0, 1] we have

a ≥ b ≥ 0 =⇒ aα1 − bα1 ≤ (a− b)α1 (2.16)

(a simple proof of (2.16) can be given as follows: for 0 < µ < 1 and 0 ≤ x ≤ y
consider φ(x, y) = (y − x)µ − yµ + xµ, we have φ(x, x) = 0 and for 0 < x < y,
∂φ
∂y ≥ 0, thus φ ≥ 0). The inequality (2.16) gives

1− 1
2nα1

≤ (1− 1
2n

)α1 , (2.17)

which together with (2.12) and (2.15) implies

A2 ≤ C ′
(

1− 1
2nα1

)
yα1

≤ C ′
[(

1− 1
2n

)
y

]α1

≤ C ′|y − x|α1 ,

and (2.8) follows. (2.9) is a straightforward consequence of (2.8). 2

3. Extensions of functions defined on ∂M

We shall use the following Lemma concerning extensions of functions defined
on ∂M (cf. [45, Vol. III, Appendix B] for a similar approach in Sobolev spaces).

Lemma 3.1 (Extension Lemma:). Let k ∈ N0, λ ∈ [0, 1], consider ψ ∈ Ck+λ(∂M).
For all m ∈ N0 there exists a function ψ̃m ∈ Ck+m+λ(M̄)∩Cm∞,k+λ(M) (=⇒ ψ̃m ∈
C loc
∞ (M)) satisfying

0 ≤ i ≤ m ∂ixψ̃m

∣∣∣
∂M

=
{

0, i ≤ m,
ψ, i = m.

Moreover for all multi–indices α we have

(x∂y)αψ̃m ∈ Ck+m+λ(M̄) ∩ Cm∞,k+λ(M) , (3.1)
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and it also holds that

(x∂y)αψ̃m − ψ (x∂y)α xm ∈ Cm+λ
k,k (M) , (3.2)

x∂vψ̃m ∈ Cm+λ
∞,k (M) . (3.3)

Proof: A simple partition of unity argument shows that it is sufficient to
establish the result for ∂M = Rn−1 and ψ — compactly supported. Let φ ∈
C∞(Rn−1) be any compactly supported function satisfying∫

Rn−1
φ(v)dn−1v = 1 .

Let χ ∈ C∞(R) be any function satisfying supp χ ⊂ (−x0, x0), χ|[−x0/2,x0/2] = 1.
Set

E[ψ](x, v) = x−(n−1)

∫
Rn−1

φ(
v − w

x
)ψ(w)dn−1w, (3.4)

ψ̃m(x, v) =
xm

m!
χ(x)E[ψ](x, v) . (3.5)

From (3.4) one immediately has E[ψ] ∈ C0
∞,k+λ(Mx0), so that (3.5) gives ψ̃m ∈

Cm∞,k+λ(M) ⊂ C loc
∞ (M). Changing the integration variable w → z = v−w

x in (3.4)
we have

0 ≤ i+ |γ| ≤ k ∂ix∂
γ
vE[ψ](x, v) =

∫
Rn−1

φ(z) ∂ix∂
γ
vψ(v − xz)dn−1z.

(3.6)

Reverting to the integration variable w in (3.6) one concludes ψ̃m ∈ Cm∞,k+λ(M),
and Proposition 2.2 gives ψ̃m ∈ Ck+m(M̄). To obtain the stronger statement
ψ̃m ∈ Ck+m+λ(M̄) some more work is needed. Assume that 0 ≤ i+ |γ| ≤ m; from
what has been said it follows that it is sufficient to consider the case k = 0. From
(3.4)–(3.5) we obtain by direct differentiation

0 < x ≤ x0/2, ∂ix∂
γ
v ψ̃m(x, v) =

∫
Rn−1

xm−i−|γ|−(n−1)χi,γ(
v − w

x
)ψ(w)dn−1w ,

(3.7)

for some compactly supported functions χi,γ ∈ C∞(Rn−1). Changing integration
variables (3.7) becomes

∂ix∂
γ
v ψ̃m(x, v) = xm−i−|γ|

∫
χi,γ(z)ψ(v − xz)dn−1z . (3.8)

The property ∂ix∂
γ
v ψ̃m ∈ C0(M̄) follows from Lebesgue dominated convergence

theorem. If λ > 0 the further property ∂ix∂
γ
v ψ̃m ∈ C0+λ(M̄) follows from (3.8) by

straightforward estimations. For 0 < x ≤ x0/2 we also have, for all multi–indices
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α,

(x∂y)αψ̃m(x, v) =
∫

Rn−1
ψ(w)(x∂y)α{xm−(n−1)φ(

v − w

x
)}dn−1w

=
∫

Rn−1
{ψ(w)− ψ(v) + ψ(v)}(x∂y)α{xm−(n−1)φ(

v − w

x
)} dn−1w

=
∫

Rn−1
{ψ(w)− ψ(v)}(x∂y)α{xm−(n−1)φ(

v − w

x
)} dn−1w

+ψ(v)
∫

Rn−1
(x∂y)α{xm−(n−1)φ(

v − w

x
)} dn−1w

=
∫

Rn−1
{ψ(w)− ψ(v)}(x∂y)α{xm−(n−1)φ(

v − w

x
)} dn−1w

+ψ(v)(x∂y)α
∫

Rn−1
xm−(n−1)φ(

v − w

x
) dn−1w

=
∫

Rn−1
{ψ(w)− ψ(v)}(x∂y)α{xm−(n−1)φ(

v − w

x
)} dn−1w

+ψ(v)(x∂y)α xm ,

and (3.2)–(3.3) easily follow. (3.1) is established by a similar simpler calculation.
2

Corollary 3.2. Let k ∈ N0, λ ∈ [0, 1].
((i)) For 0 ≤ i ≤ k let fi ∈ Ck−i+λ(∂M). There exists f ∈ Ck+λ(M̄) ∩

C loc
∞ (M) such that

∂ixf
∣∣∣
∂M

= fi .

Moreover for all multi–indices α we have

(x∂y)αf ∈ Ck+λ(M̄) . (3.9)

((ii)) Let ĝ ∈ Ck+λ(M̄). There exists f ∈ Ck+λ(M̄)∩C0
∞,k+λ(M) such that

f − g ∈ Ckk+λ,0+λ(M) ∩ Ck+λk+λ (M) . (3.10)

Proof: 1. We shall proceed by induction. Suppose thus that we have proved
the existence of a function f satisfying our claims for 0 ≤ i ≤ ` < k. To start the
induction, for ` = −1 set f ≡ 0. For ` ≥ −1 define

ψ`+1 = ∂`+1
x f

∣∣∣
∂M

∈ Ck−`−1+λ(∂M) .

The induction step is obtained by replacing f with

f + f̃`+1 − ψ̃`+1 ,

where f̃`+1, ψ̃`+1 are obtained from f`+1 and of ψ`+1 using Lemma 3.1 with m =
`+ 1.

2. Let f be obtained from part 1 of this Corollary using the functions fi =
∂ixg|∂M ∈ Ck−i+λ(∂M). Now (3.10) is equivalent to

0 ≤ i+ |γ| ≤ k ∂ix∂
γ
v (f − g) ∈ Ck−i−|γ|0+λ,0+λ(M) ∩ Ck−i−|γ|+λ0+λ (M) .

Choose some γ satisfying 0 ≤ |γ| ≤ k; since f − g has vanishing Taylor coefficients
at ∂M the result follows for λ > 0 from eq. (1.2) with ` = k − |γ| of Proposition
1.1. If λ = 0 the result follows in a similar way from (1.3). 2
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Let us recall that Whitney’s extension Lemma is usually proved in a Ck+λ(M̄)
context, with λ > 0. Corollary 3.2 can be used to prove the equivalent of the
Whitney Lemma for functions in Ck(M̄) when the boundary ∂M is a sufficiently
differentiable manifold (as is the case here); it also gives a rather elementary proof
of that Lemma in our context.

As an application of the results here, in Appendix B we present a construction
of “almost Gaussian” coordinates near ∂M . The construction leads to coordinates
which for many purposes are as convenient as the “real” ones. Moreover, even1

in the case where finite differentiability of the metric is assumed, the construction
leads to a coordinate system in which the coefficients of the metric tensor are of
the same differentiability class as in the original coordinates.

4. Mapping properties of some integral operators

A significant role in our approach to boundary regularity in Section 2 is played
by the mapping properties of the integral operators

Iµa (f)(x, v) = xµ
∫ x

a

s−1−µf(s, v) ds , (4.1)

x ∈ (0, x0] , v ∈ ∂M , a ∈ [0, x0] , µ ∈ R ,

Iµ(f)(v) = xµ
∫ x0

0

s−1−µf(s, v) ds ,

Ga =
1

µ+ − µ−

(
Iµ+
a − I

µ−
0

)
, µ− < µ+ , µ± ∈ R ,

which arise from fundamental solutions for some ordinary differential equations, cf.
the beginning of Section 2. We have the following results:

Lemma 4.1. The following maps are continuous:
((i)) α ≤ µ, λ, λ′ ∈ [0, 1]

Iµx0
: Cα,β0+λ,0+λ′(Mxo

) → Cα,β
′

0+λ,0+λ′(Mxo
) , β′ = β if α < µ ; (4.2)

β′ = β+ 1 if α = µ and β 6= −1; β′ > 0 arbitrary if α = µ and β = −1.
((ii)) α > µ , λ, λ′ ∈ [0, 1]

Iµx0
: Cα,β0+λ,0+λ′(Mxo

) → Cµ0+λ1,0+λ′
(Mxo

) , λ1 = λ for λ 6= α− µ ,
(4.3)

and if λ = α− µ then λ1 is arbitrary in [0, λ).
((iii)) α > µ , λ, λ′ ∈ [0, 1]

Iµ0 : Cα,β0+λ,0+λ′(Mxo
) → Cα,β0+λ′′,0+λ′(Mxo

) , λ′′ = min(λ, λ′) . (4.4)

((iv)) α > µ , λ ∈ [0, 1] ,

Iµ : Cα,β0,0+λ(Mxo
) → xµ C0+λ(∂M) . (4.5)

((v)) µ ≥ 0 , λ ∈ [0, 1] , µ+ λ > 0 ,

Iµx0
:
{
f ∈ C0+λ(M̄xo

), f
∣∣
∂M

= 0
}
→ C0+λ′(M̄xo

) , (4.6)

for some λ′(µ, λ) ∈ [0, λ], λ′ > 0 if λ > 0.

1Recall that one loses two degrees of differentiability of the coefficients of the metric tensor
when transforming the metric to the exact Gauss coordinate system.
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((vi)) µ ≤ 0 , λ ∈ [0, 1] ,−µ+ λ > 0 ,

Iµ0 :
{
f ∈ C0+λ(M̄xo

) , f
∣∣
∂M

= 0
}
→ C0+λ′(M̄xo

) , (4.7)

for some λ′(µ, λ) ∈ [0, λ], λ′ > 0 if λ > 0.

Proof: For λ = 0 the proof of (4.2)–(4.4) is a straightforward estimation;
in that case continuity of Iµ0 (f) in v in (4.4) follows from Lebesgue’s dominated
convergence theorem. To establish Hölder continuity when λ > 0, let us note that

Iµa (f)(x, v)− Iµa (f)(x′, v′) = A+B , a = 0, x0 , (4.8)

A = Iµa (f)(x, v)− Iµa (f)(x′, v) ,

B = Iµa (f)(x′, v)− Iµa (f)(x′, v′) .
The estimation of B is straightforward, while A can be estimated using e.g. a
scaling argument. To prove (4.6), the not entirely trivial point is to estimate the
term A from (4.8). We have, for 0 < x ≤ y ≤ x0

Iµx0
(f)(y, v)− Iµx0

(f)(x, v) = A1 +A2

A1 = −(yµ − xµ)
∫ x0

y

s−1−µf(s, v) ds ,

A2 = xµ
∫ y

x

s−1−µf(s, v) ds . (4.9)

Since f vanishes at ∂M , we have |f(x, v)| ≤ ||f ||C0+λ(M̄xo )x
λ. Suppose first that

0 ≤ µ ≤ 1, recall that

yµ − xµ ≤ (y − x)µ , (4.10)

(cf. (2.16)). For µ = 0, A1 = 0 and the result follows immediately from (4.9). If
0 < µ ≤ 1, setting λ′ = min(µ, λ) we have

|A1| ≤ C
(
xλ−µ0 + yλ−µ

)
(y − x)µ

= C
(
xλ−µ0 + yλ−µ

)
(y − x)µ−λ

′
(y − x)λ

′

≤ C ′
(
yµ−λ

′
+ yλ−λ

′)
(y − x)λ

′

≤ C ′
(
xλ−λ

′

0 + xµ−λ
′

0

)
(y − x)λ

′
.

On the other hand if µ > 1 then

|A1| ≤ C
(
xλ−µ0 + yλ−µ

)
(yµ − xµ)

≤ C
(
xλ−µ0 + yλ−µ

)
µyµ−1(y − x)

≤ µC
(
xλ−1

0 + yλ−1
)
(y − x)1−λ(y − x)λ

≤ 2µC(y − x)λ .

If λ−µ > 0 the estimation |A2| ≤ C(y−x)λ−µ follows from (4.10); if λ−µ ≤ 0 we
can without loss of generality assume λ− µ < 0. If −1 ≤ λ− µ < 0 we have, with
λ′ = min(µ− λ, λ),

|A2| ≤ Cxµ
(
xλ−µ − yλ−µ

)
= Cxλyλ−µ

(
yµ−λ − xµ−λ

)
≤ Cxλyλ−µ(y − x)λ

′
(y − x)µ−λ−λ

′
≤ Cxλy−λ

′
(y − x)λ

′

≤ Cxλ−λ
′

0 (y − x)λ
′
.
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while in the case λ− µ < −1 the estimation proceeds as follows:

|A2| ≤ Cxλyλ−µ(yµ−λ − xµ−λ)

≤ C(µ− λ)xλy−1(y − x)

≤ C(µ− λ)xλy−λ(y − x)λ ≤ C(µ− λ)(y − x)λ .

(4.7) is proved by similar methods, (4.5) is straightforward. 2

For the purposes of this paper only the information contained in the Lemma
above and in equation (4.14) below will be needed. For completeness, and for future
reference, we wish however to point out the following consequences of Lemma 4.1:

Corollary 4.2. Let i, k,m ∈ N0. The following maps are continuous

((i)) α ≤ µ , λ, λ′ ∈ [0, 1]

Iµx0
: Cα,βk+λ,m+λ′(Mxo) → Cα,β

′

k+λ,m+λ′(Mxo) (4.11)

β′ = β if α < µ; β′ = β + 1 if α = µ and β 6= −1; β′ > 0 arbitrary if
α = µ and β = −1.

((ii)) α > µ, λ, λ′ ∈ [0, 1]

Iµx0
: Cα,βk+λ,m+λ′(Mxo) → Cµk+λ′′,m+λ′(Mxo) , (4.12)

with some λ′′ ∈ [0, λ], λ′′ > 0 if λ > 0.
((iii)) α > µ, λ, λ′ ∈ [0, 1], let k0 be any integer such that 0 ≤ k0 ≤ k and

k0 −m < α− µ,

Iµ0 : Cα,βk+λ,m+λ′(Mxo
) → Cα,βk0+λ1,m+λ′(Mxo

) (4.13)

for some λ1 ∈ [0,min(λ, λ′)]; λ1 = 0 if k0 > m, λ1 > 0 if λλ′ > 0 and
k0 ≤ m.

((iv)) α > µ, λ, λ′ ∈ [0, 1], let k0 be any integer such that 0 ≤ k0 ≤ k and
k0 −m < α− µ,

Iµ : Cα,βk,m+λ(Mxo
) → xµCm+λ(∂M) ∩ xµCk0(∂M) . (4.14)

((v)) α < µ, λ ∈ [0, 1] let `0 be any integer such that µ− α > `0 ≥ 0

Iµx0
: xαCk+λ|m(M̄xo) → xαCmin(k,`0)+λ′|m(M̄xo) (4.15)

for some λ′ ∈ [0, λ], λ′ > 0 if λ > 0.
((vi)) α > µ, λ ∈ [0, 1]

Iµ0 : xαCk+λ|m(M̄xo) → xαCk+λ′|m(M̄xo) , (4.16)

for some λ′ ∈ [0, λ], λ′ > 0 if λ > 0.
((vii))

Iµx0
: Aphg → Aphg . (4.17)

((viii)) α > µ

Iµ0 : Aphg ∩ Cα0 (Mx0) → Aphg . (4.18)

Proof: (4.11)–(4.14) follow by straightforward induction from (4.2)–(4.5).
To prove (4.15), suppose first that k ≤ `0, choose γ, δ satisfying 0 ≤ |γ| ≤ m,
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0 ≤ |δ| ≤ k, set β = δ + γ, define f̃ ≡ ∂βv x
−αf , thus f̃ ∈ Ck−|δ|+λ| |γ|. Taylor

expanding f̃ up to order ` = k − |δ| we have from Proposition 1.1

f̃(x, v) =
∑̀
i=0

xif̃i(v) + r̃` , fi ∈ Ck−i−|δ|+λ(∂M) ,

∀ 0 ≤ i ≤ ` ∂ixr` ∈ x`−iC0+λ ∩ x`−i+λC0 , (4.19)

so that

Iµ−αx0

(
f̃
)

=
∑̀
i=0

xif̃i(v)
µ− α− i

+ xµ−α
∑̀
i=0

xi−µ+α
0 f̃i(v)
i− µ+ α

+ Iµ−αx0
(r̃`) .

(4.6) and (4.19) imply by induction

0 ≤ p ≤ ` ∂pxI
µ−α
x0

(r̃`) ∈ C0+λ′ ,

for some λ′ ∈ [0, λ], λ′ > 0 if λ > 0, which gives ∂pxI
µ−α
x0

(f̃) ∈ C0+λ′ for 0 ≤ p ≤ `,
therefore for 0 ≤ |γ| ≤ m we have ∂γv I

µ
x0

(f) ∈ xαCk+λ′ . From

(x∂x)jIµa = µjIµa +
∑

p+q=j−1

(x∂x)pµqf (4.20)

the result follows for k ≤ `0. The inclusion

k ≥ `0 Ck+λ|m(M̄xo
) ⊂ C`0+λ|m(M̄xo

)

reduces the case k ≥ `0 to the previous one. (4.16) is proved in a similar way using
(4.7). (4.17) and (4.18) are elementary. 2

Proposition 4.3. Let i, k ∈ N0, λ ∈ [0, 1]. There exists λ′ ∈ [0, λ], λ′ > 0
unless λ = 0, such that the following maps are continuous.

((i)) −k ≤ j ∈ Z, max(µ−, µ− + j) < α ≤ µ+,

Gx0 : Cα,βk+j+λ,k+λ(Mxo) → Cα,β
′

k+j+λ′,k+λ(Mxo) , (4.21)

β′ = β if α < µ+; β′ = β + 1 if α = µ+ and β 6= −1; β′ > 0 arbitrary
if α = µ+, β = −1.

((ii)) α > µ+, α > µ− + j, j ∈ N0,

Gx0 : Cα,βk+j+λ,k+λ(Mxo
) → C

µ+
k+j+λ′,k+λ(Mxo

) . (4.22)

((iii)) j = 0, 1

G0 : Cµ++1
j+λ (Mxo

) → C
µ++1
0 (Mxo

) . (4.23)

((iv)) j = 1, 2

G0 : Cµ++j
k+j+λ,k+λ(Mxo) → C

µ++j
k+j−1+λ′,k+λ(Mxo) . (4.24)

((v)) j ∈ N0, µ+ + j < α,

G0 : Cα,βk+j+λ,k+λ(Mxo
) → Cα,βk+j+λ′,k+λ(Mxo

) . (4.25)

((vi)) µ− < α < µ+, let `0 be any integer such that µ+ − α > `0,

Gx0 : xαCk+λ|m(M̄xo
) → xαCmin(k,`0)+λ′|m(M̄xo

) . (4.26)

((vii)) α > µ+,

G0 : xαCk+λ|m(M̄xo
) → xαCk+λ′|m(M̄xo

) . (4.27)
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((viii))

Ga : A{si}I
i=0 → Aphg , a = 0, x0 , (4.28)

provided that s0 > µ− if a = x0, and s0 > µ+ if a = 0.

Proof: The results follow from Corollary 4.2 and from

Gx0 =
1

µ+ − µ−

(
Iµ+
x0

− I
µ−
0

)
=

1
µ+ − µ−

(
I
µ+
0 − I

µ−
0 − Iµ+

)
,

x
∂

∂x
·Gx0 =

1
µ+ − µ−

(
µ+I

µ+
x0

− µ−I
µ−
x0

)
.

2



CHAPTER 4

Regularity at the boundary: the linear problem.

1. Tangential regularity below the threshold

Throughout this paper the letter C denotes a constant, the value of which
may change from line to line. We use the summation convention unless specified
otherwise.

We shall consider systems of equations which in the local coordinates as de-
scribed in Chapter 3 can be written in the form

Lab u
b = fa , a, b = 1, . . . , N , (1.1)

Here

Lab =
∑
|α|≤m

aabα(y)(x∂y)α , (1.2)

where we use the notation

(x∂y)α ≡ (x∂x)α1(x∂y2)α2 . . . (x∂yn)αn for α = (α1, . . . , αn) .

Dropping indices we can write

L =
∑
|α|≤m

aα(x∂y)α , (1.3)

or briefly
Lu = f .

Let F be a function space. We shall say that L ∈ OPmF if aabα ∈ F . We set

a = (aα) , ‖a‖F ≡
∑
a,b,α

‖aabα‖F .

The operator L will be called elliptic on Mx0 if there exist constants c1, c2 > 0 such
that on Mx0 it holds that

c1|ζ|mN ≤ det
( ∑
|α|=m

aabαζ
α
)
≤ c2|ζ|mN , (1.4)

|ζ| = {(ζ1)2 + . . .+ (ζn)2} 1
2 .

The operator L will be called elliptic if it is elliptic on Mx0 , and if moreover it
is elliptic in any standard sense in CMx0 ; no uniformity conditions on CMx0 are
assumed. In some of the results in our paper, the notion of ellipticity on Mx0 can
be weakened to a suitably weighted (in the sense of (1.2)) version of the definition
of Douglis–Nirenberg [30].

The main results of this chapter – Theorems 2.6, 2.9, 2.10 and 2.11 – establish
some form of “boundary regularity” for solutions of (1.1), under the hypothesis of
the existence of a “regularity interval” for weighted Hölder or for weighted Sobolev

33
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spaces, as defined below. Thus the results of this chapter reduce the problem of
boundary behaviour to that of existence of a “regularity interval” (which may be
quite difficult to prove for specific operators). In section 3 we shall prove the exis-
tence of a regularity interval for weighted Sobolev spaces for the “conformal vector
Laplacian” (in fact, of a strong regularity interval), while in Chapter 7 the existence
of a (strong) regularity interval for weighted Hölder spaces will be established for
the Laplace operator (the existence of a regularity interval for weighted Sobolev
spaces for the Laplacian follows from Corollary 3.13 of [3] and from Proposition 1.2
below).

Let Fα,β∗ (Ω) be one of the spaces Cα,β∗ , Wα,β;p
∗ or Hα,β

∗ introduced in Chapter
3, where ∗ stands for a regularity index, e.g. ∗ = k, or ∗ = k + λ,m + µ, etc. We
shall always be interested in Ω = M or Ω = Mx0 , with x0 — as described at the
beginning of Chapter 3; note that if Ω = Mσ with 0 < σ < x0, one can always
replace x0 with σ to reduce this to the case Ω = Mx0 — our results and methods
are “stable” under such replacements. We shall say that an interval (α−, α+) ⊂ R
is a regularity interval for Fα,β∗ (Ω) except for β ∈ B ⊂ R for an operator L of order
m if the following implication holds, with F loc

m (Ω) – space of functions which are
locally in Fm,(

Lu = f, f ∈ Fα,β∗ (Ω) , α ∈ (α−, α+), β 6∈ B,
u ∈ Fα−+ε

0 (Ω) ∩ F loc
m (Ω), ε > 0

)
=⇒(

u ∈ Fα,β0 (Ω)
)

(1.5)

Usually we shall consider B = ∅, B = {−1}, or B = R\{0}; in that last case we
shall say that (α−, α+) is a regularity interval for Fα∗ .

We shall say that an interval (α−, α+) is a strong regularity interval for Fα,β∗ (Ω),
β 6∈ B, if (α−, α+) is a regularity interval for Fα,β0 (Ω) and if moreover there exist
constants 0 < x1(α, β) ≤ x0, C(α, β) such that the following implication holds,(

Lu = f, f ∈ Fα,β0 (Ω) , α ∈ (α−, α+), β 6∈ B,
u ∈ Fα−+ε

0 (Ω) ∩ F loc
m (Ω), ε > 0

)
=⇒(

‖u‖Fα,β
0 (Mx0 ) ≤ C

(
‖f‖Fα,β

0 (Mx0 ) + ‖u‖Fm(Mx1,x0 )

) )
(1.6)

(recall that Mx1,x0 ≡ CMx1 ∩Mx0 ≡ {p ∈ M : x1 < x(p) < x0}). For instance, in
the weighted Hölder spaces Cα,β0 (Mx0) case the inequality (1.6) reads

‖u‖Cα,β
0 (Mx0 ) ≤ CH

(
‖f‖Cα,β

0 (Mx0 ) + ‖u‖Cm(Mx1,x0 )

)
. (1.7)

In the weighted Sobolev spaces Lα,β;p(Mx0 , x
−ndµg) case the inequality (1.6) reads

‖u‖Lα,β;p(Mx0 ,x
−ndµg) ≤ CS

(
‖f‖Lα,β;p(Mx0 ,x

−ndµg) + ‖u‖Wp
m(Mx1,x0 ,g,dµg)

)
.
(1.8)

In what follows we shall use difference–quotient arguments, writing expressions of
the type “u(x, v′) − u(x, v)”, by which we mean the following construction: we
can always find a covering of ∂M by coordinate charts (Ui,Φi), i = 1, . . . , I, with
Ui = Φi(Bn−1

0 (3δi)), where Bn−1
0 (r) is a ball of radius r in Rn−1 centered at the

origin, such that Ui = Φi(Bn−1
0 (δi)) is also a covering of ∂M , let ϕi be a function
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such that ϕi
∣∣
Φi(Bn−1

0 (2δi))
= 1, suppϕi ⊂ Ui, 0 ≤ ϕi ≤ 1. Let ∆ ∈ S(1), where S(r)

is a sphere of radius r in Rn−1, for (x, v) ∈ M̄x0 (v ∈ ∂M) define vector fields Xj ,
j = 1, . . . , I, as follows

Xj(x, v) =
{
ϕj(v)χ(x)∆k∂vk v ∈ Uj , x(p) ≤ x0 ,
0 otherwise,

where χ ∈ C∞(R), χ(x) = 1 for 0 ≤ x ≤ x0/2, 0 ≤ χ(x) ≤ 1, χ(0) = 0 for
x ≥ 3x0/4. Set

Ψ∆,h,j = exp{hXj} ,
where exp{hXj}, h ∈ R, is the one parameter group of diffeomorphisms generated
by Xj on M̄x0 . Ψ∆,h,j can be extended to a smooth map from M̄ to M̄ by setting
Ψ∆,h,j

∣∣
CMx0

= id. Note that

0 ≤ x ≤ x0/2 , v ∈ Uj , |h| ≤ δj : Ψ∆,h,j(x, v) = (x, v + h∆) .
(1.9)

In all further considerations we shall always assume that the fields ua, fa are
geometric objects, by which we mean that 1) one can define an action Ψ∆,h,j

∗ f ,
Ψ∆,h,j

∗ u, and 2) that the equation (1.1) is geometric in the sense that

Ψ∆,h,j
∗(Lu) = L∆,h,jΨ∆,h,j

∗u = Ψ∆,h,j
∗ f (1.10)

with some operator L∆,h,j of the form (1.2):

L∆,h,j =
∑
|α|≤m

a∆,h,j,α(x∂y)α .

We shall also assume that for 0 ≤ x ≤ x0/2, |h| ≤ δj and v ∈ Uj we have

Ψ∆,h,j
∗ u(x, v) = u(x, v + h∆) , (1.11)

a∆,h,j,α(x, v) = aα(x, v + h∆), Ψ∆,h,j
∗ f(x, v) = f(x, v + h∆) ,

(1.12)

and that there exists a constant C such that for 0 ≤ ` ≤ k, |h| ≤ maxj δj we have

‖Ψ∆,h,j
∗ f − f‖Cα,β

k,`
(Mx0 ) ≤ C‖f‖Cα,β

k,`+µ
(Mx0 )h

µ , (1.13)

‖Ψ∆,h,j
∗ f‖Cα,β

k+λ,`
(Mx0 ) ≤ C‖f‖Cα,β

k+λ,`
(Mx0 ) , (1.14)

‖Ψ∆,h,j
∗ f − f‖Wα,β;p

k,`−1(Mx0 ) ≤ C‖f‖Wα,β;p
k,`

(Mx0 )h , (1.15)

‖Ψ∆,h,j
∗ f‖Wα,β;p

k,`
(Mx0 ) ≤ C‖f‖Wα,β;p

k,`
(Mx0 ) , (1.16)

‖a∆,h,j,α − aα‖Cα,β
k,`

(Mx0 ) ≤ C‖a‖Cα,β
k,`+µ

(Mx0 )h
µ , (1.17)

‖a∆,h,j,α‖Cα,β
k+λ,`

(Mx0 ) ≤ C‖a‖Cα,β
k+λ,`

(Mx0 ) . (1.18)

Note that (1.11) implies that we have

‖u‖Cα,β
k+λ,`+µ

(Mx0 ) ≤ ‖u‖Cα,β
k+λ,`

(Mx0 ) +
I∑
i=0

sup
0<h≤δi, ∆∈S(1)

h−µ‖Ψ∆,h,j
∗ u− u‖Cα,β

k,`
(Mx0 ) .
(1.19)
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Similarly the well known property of difference quotients in Sobolev spaces (cf. e.g.
[40, Lemma 7.24]) also gives

‖u‖Wα,β;p
k,`

(Mx0 ) ≤ ‖u‖Wα,β;p
k,`−1(Mx0 ) +

I∑
i=0

sup
0<h≤δi, ∆∈S(1)

h−1‖Ψ∆,h,j
∗ f − f‖Wα,β;p

k,`−1(Mx0 ) .
(1.20)

If u, f are tensor fields and L is an invariant operator, (1.10)–(1.18) are easily seen
to hold (if u is e.g. a covariant tensor field, then Ψ∆,h,j

∗ is the pull–back operation
by Ψ∆,h,j ; if u is e.g. a contravariant tensor field, then Ψ∆,h,j

∗ is the push–forward
operation by Ψ−1

∆,h,j). In all subsequent arguments involving difference quotients
the reader should assume that we have this construction in mind. We shall say that
L is a geometric operator, or that eq. (1.1) is a geometric equation, whenever the
above “coordinate invariance” hypotheses hold.

The scaling technique, illustrated in the proof of the following Lemma, will be
used throughout:

Lemma 1.1 (Scaling estimates). ((i)) Let L ∈ OPm
C0

k
(Mx0 )

, k ≥ 0, be

elliptic on Mx0 , let g ∈ C0
k(Mx0) be a Riemannian metric on M̄ .

There exists a constant C such that for all u ∈ Wα,β;p
0 (Mx0 , dµg) ∩

W p,loc
m (Mx0 , g, dµg), p ∈ (1,∞), we have

‖u‖Wα,β;p
k+m

(Mx0/2,g,dµg) ≤ C
{
‖Lu‖Wα,β;p

k
(Mx0 ,g,dµg) + ‖u‖Wα,β;p

0 (Mx0 ,dµg)

}
.
(1.21)

((ii)) Let L ∈ OPm
C0

k+λ
(Mx0 )

, k ≥ 0, λ ∈ (0, 1), be elliptic on Mx0 . There

exists a constant C such that for all u ∈ Cα,β0 (Mx0) ∩ C loc
m (Mx0) we

have

‖u‖Cα,β
k+m+λ

(Mx0/2)
≤ C

{
‖Lu‖Cα,β

k+λ
(Mx0 ) + ‖u‖Cα,β

0 (Mx0 )

}
. (1.22)

Proof: Let L̂ be an elliptic operator of order m on Bn0 (1), the coefficients of
which are k times continuously differentiable, where Bn0 (s) is a ball in Rn of radius
s centered at the origin. From [2, Theorem 10.3] and the argument of the proof of
Theorem 9.11 in [40] for p ∈ (1,∞) one has

‖û‖Wp
k+m

(Bn
0 (1/2),δij ,dny) ≤ C

{
‖L̂û‖Wp

k
(Bn

0 (1),δij ,dny) + ‖û‖Lp(Bn
0 (1),dny)

}
.
(1.23)

(1.21) follows from (1.23) applied to the functions û ≡ uŷ defined by

uŷ(y) = u
( x̂

2
y + ŷ

)
x̂−α(| ln x̂|+ 1)−β , y ∈ Bn0 (1) , ŷ = (x̂, v̂) ∈Mx0/2

by a Whitney cube (cf. e.g. [68, Chapter 6]) decomposition argument. (1.22) is
obtained by applying the interior Schauder estimates [30, Theorem 1].

‖û‖Ck+m+λ(Bn
0 (1/2)) ≤ C

{
‖L̂û‖Ck+λ(Bn

0 (1)) + ‖û‖C0(Bn
0 (1))

}
to the functions uŷ. 2

The following Proposition (cf. [3, Proposition 2.6]) provides a criterion for I to
be a regularity interval for second order operators:
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Proposition 1.2. Let k ∈ N0, λ ∈ (0, 1), and let x be a defining function for
∂M , with x0 — as described at the beginning of Chapter 3, recall that ∂̃Ms = {p ∈
M : x(p) = s}, suppose that B ⊂ R satisfies 0 6∈ B.

((i)) Let L ∈ OP 2
C0

k+λ
(Mx0 )

, suppose that for all α ∈ (α−, α+) and β 6∈ B

there exists 0 < x1 ≤ x0 (possibly depending upon α and β) such
that for all ψ ∈ Ck+2+λ(∂̃Mx1) L is an isomorphism between

{
u ∈

Cα,βk+2+λ(Mx1) : u|∂̃Mx1
= ψ

}
and Cα,βk+λ(Mx1). Then L has (α−, α+) as

a regularity interval for Cα,βk+λ(M), β 6∈ B.
((ii)) Let L ∈ OP 2

C0
k
(Mx0 )

, suppose that for all α ∈ (ω−, ω+) and β 6∈ B there
exists 0 < x1 ≤ x0 (possibly depending upon α and β) such that for all
ψ ∈Wα,β;p

k+2 (Mx1 , g, x
−ndµg), L is an isomorphism between

{
u : u−ψ ∈

◦
W

α,β;p
1 ∩Wα,β;p

k+2 (Mx1 , g, x
−ndµg)

}
and Wα,β;p

k (Mx1 , g, x
−ndµg). Then

L has (ω−, ω+) as a regularity interval for Wα,β;p
k (M, g, x−ndµg), β 6∈

B. Moreover if the above holds with k = 0, there exists a constant C
such that for u ∈Wω−+ε;p

0 (Mx1 , x
−ndµg)∩W loc

2 (Mx1), ε > 0 for which
Lu ∈Wα,β;p

0 (Mx1 , x
−ndµg), α ∈ (ω−, ω+), β 6∈ B, we have

‖u‖Wα,β;p
2 (Mx1 ,g,x

−ndµg) ≤ C(‖Lu‖Wα,β;p
0 (Mx1 ,x

−ndµg) + ‖u‖Wp
2 (Mx1/2,x1 ,g,dµg))

(1.24)

(recall that Mx1/2,x1 ≡Mx1 \Mx1/2), in particular (ω−, ω+) is a strong
regularity interval for Wα,β;p

0 (M, g, x−ndµg), β 6∈ B.

Remark: Let us point out, that if the hypotheses of point (i) above hold with
k = 0, then we certainly have the inequality

‖u‖Cα,β
0 (Mx0 ) ≤ CH

(
‖f‖Cα,β

0+λ
(Mx0 ) + ‖u‖Cm+λ(Mx1,x0 )

)
. (1.25)

This does not lead to a strong regularity interval because of the Hölder continuity
exponent λ in the norm of f above. It should be mentioned that at the price
of some supplementary complications most of our results would go through if in
the definition of a strong regularity interval the inequality (1.7) were replaced by
(1.25). Since, however, (1.7) is sufficient for our purposes (cf. Chapter 7) we shall
not consider that possibility.

Proof: (i): Let Lu = f , f ∈ Cα,βk+λ(M), u = O(xα−+ε), decreasing ε if
necessary we may assume γ = α− + ε < α. By Lemma 1.1 u ∈ Cγk+2+λ(Mx0). Set
ψ = u|∂̃Mx1

, thus ψ ∈ Ck+2+λ(∂̃Mx1). For α ∈ (α−, α+), β 6∈ B, L is surjective

there exists therefore χ ∈ Cα,βk+2+λ(Mx1), χ|∂̃Mx1
= ψ, such that Lχ = f |Mx1

. We
have u|Mx1

, χ ∈ Cγk+2+λ(Mx1), γ ∈ (α−, α+), by injectivity of L on Cγk+2+λ(Mx1)
it follows that u|Mx1

= χ, thus u ∈ Cα,βk+2+λ(Mx0).
(i): Let ϕ ∈ C∞(M) be any function satisfying ϕ

∣∣
Mx1/2

= 1, ϕ
∣∣
CM3x1/4

= 0, set

u1 = ϕu, u2 = (1 − ϕ)u, define Lu = f . We have u1 ∈ W
ω−+ε;p
0 (Mx1 , x

−ndµg) ∩
W loc

2 (Mx1), u1 = 0 in M3x1/4,x1 , from ϕ
∣∣
Mx1/2

= 1 it follows that Lu1

∣∣
Mx1/2

=

f
∣∣
Mx1/2

, and an argument as in the proof of point (i) shows that u1 ∈Wα,β;p
2 (Mx1 , g, x

−ndµg),

thus u ∈ Wα,β;p
2 (Mx1 , g, x

−ndµg) and (ω−, ω+) is a regularity interval. If k = 0
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then L :
◦
W

α,β;p
1 ∩Wα,β;p

2 (Mx1 , g, x
−ndµg) →Wα,β;p

0 (Mx1 , g, x
−ndµg) is a bijection,

and the open mapping theorem shows that there exists a constant C such that for
all w ∈

◦
W

α,β;p
1 ∩Wα,β;p

2 (Mx1 , g, x
−ndµg) we have

‖w‖Wα,β;p
2 (Mx1 ,g,x

−ndµg) ≤ C‖Lw‖Wα,β;p
0 (Mx1 ,x

−ndµg) .

This inequality applied to w = u1 gives

‖u1‖Wα,β;p
2 (Mx1 ,g,x

−ndµg) ≤ C(‖f‖Wα,β;p
0 (Mx1 ,x

−ndµg) + ‖u‖Wp
1 (Mx1/2,x1 ,g,dµg))

(it is easily seen that for σ > 0 we haveW p
k (Mσ,x1 , g, dµg) = Wα,β;p

k (Mσ,x1 , g, x
−ndµg)

with equivalent norms), and (1.24) immediately follows. 2

The main result of this section is the following:

Theorem 1.3 (Tangential regularity, α ∈ (α−, α+)). ((i)) Let (α−, α+)
be a strong regularity interval for Cα,β0 (M), β 6∈ B, for a geometric ellip-
tic operator L ∈ OPm

C0
k+λ,`+µ

(M)
, λ ∈ (0, 1), µ ∈ [0, 1], 0 ≤ `+µ ≤ k+λ,

let α− < α < α+, suppose that u ∈ C loc
m (M) satisfies

Lu = f , f ∈ Cα,βk+λ,`+µ(M) , u = O(xα−+ε) , ε > 0 , β 6∈ B .

Then for all λ′ ∈ (0, 1), µ′ ∈ [0, µ) if µ > 0, µ′ = 0 otherwise we have

u ∈ Cα,βk+m−1+λ′,`+µ(Mx0) ∩ Cα,βk+m+λ,`+µ′(Mx0) . (1.26)

Moreover for all λ′ ∈ (0, 1), µ′ ∈ [0, µ) if µ > 0, µ′ = 0 otherwise there
exists a constant C depending only upon α, β, n=dimM , N (cf. eq.
(1.1)), the ellipticity constants c1, c2 of eq. (1.4), the constant CH
of (1.7), the constants in (1.13)–(1.18), ‖a‖C0

k+λ,`+µ
(M), λ′ and µ′ such

that we have

‖u‖Cα,β

k+m−1+λ′,`+µ
(Mx0 ) + ‖u‖Cα,β

k+m+λ,`+µ′
(Mx0 ) ≤ C

(
‖f‖Cα,β

k+λ,`+µ
(Mx0 ) + ‖u‖Ck+m+λ(Mx̃1,x0 )

)
,

(1.27)

x̃1 = min(x1, x0/2). If (α−, α+) is only a regularity interval for Cα,β0+λ(M),
then (1.26) holds with µ′ = µ = 0 provided that α− + 1 < α < α+ and
u = O(xα−+1+ε), ε > 0.

((ii)) Let (ω−, ω+) be a strong regularity interval for Wα,β;p
0 (M, g, x−ndµg),

β 6∈ B for a geometric elliptic operator L ∈ OPm
C0

k,`
(M)

, 0 ≤ ` ≤ k, let

ω− < α < ω+, p ∈ (1,∞), suppose that u ∈W p,loc
m (M, g, dµg) satisfies

Lu = f , f ∈Wα,β;p
k,` (M, g, x−ndµg) , u ∈Wω−+ε;p

0 (M, g, x−ndµg) , ε > 0 , β 6∈ B .

Then

u ∈Wα,β;p
k+m,`(Mx0 , g, x

−ndµg) . (1.28)

Moreover there exists a constant C depending only upon α, β, n=dimM ,
N (cf. eq. (1.1)), the ellipticity constants c1, c2 of eq. (1.4), the con-
stant CS of (1.8), the constants in (1.13)–(1.18), ‖a‖C0

k,`
(M) and on the

modulus of continuity of (x∂y)γaabα(y), |γ| = k, y ∈Mx0 , such that

‖u‖Wα,β;p
k+m,`

(Mx0 ,g,x
−ndµg) ≤ C

(
‖f‖Wα,β;p

k,`
(Mx0 ,g,x

−ndµg) + ‖u‖Wp
k+m

(Mx̃1,x0 ,g,dµg)

)
,

(1.29)
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x̃1 = min(x1, x0/2). If (ω−, ω+) is only a regularity interval forWα,β;p
0 (M),

then (1.28) holds provided that ω−+1 < α < ω+ and u ∈Wω−+1+ε;p
0 (M, g, x−ndµg),

ε > 0.

Remark: If L ∈ OPmC0
∞

and (α−, α+) is only a regularity interval, the restric-
tion α > α− + 1 can be relaxed to α > α− by commuting the equation satisfied by
u with a pseudodifferential operator [25], we shall however not discuss this here.

Proof: We shall prove point (i), point (ii) is proved in a similar (and simpler)
way. We shall proceed by induction on `. Since (α−, α+) is a regularity interval we
have u ∈ Cα,βk+m+λ by the scaling estimates, thus the result holds for `+ µ = 0. Let
f ∈ Cα,βk+λ,`0+µ

, µ ∈ (0, 1], 0 ≤ `0 ≤ k, or f ∈ Cα,βk+λ,`0+1+µ, µ = 0, 0 ≤ `0 + 1 ≤ k,
and suppose that u ∈ Cα,βk+m+λ,`0

. If (α−, α+) is a strong regularity interval suppose
moreover that we have

‖u‖Cα,β
k+m+λ,`0

(Mx0 ) ≤ C

(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Ck+m+λ(Mx1,x0 )

)
.

(1.30)

Let Yi, i = 1, . . . , `1, be any smooth vector fields of the form χ(x)Y Ai (v) ∂
∂vA ,

Y Ai ∈ C∞(∂M), χ ∈ C∞(R), χ = 1 in a neighbourhood of 0, χ = 0 outside of
[0, x0/2], where `1 = `0 + 1 when (α−, α+) is a regularity interval and `1 = `0 when
(α−, α+) is a strong regularity interval. We have

Lũ = ϕ̃ , ϕ̃ = f̃ + ρ̃ , (1.31)
ũ = Y1 . . . Y`1u ,

f̃ = Y1 . . . Y`1f ∈ C
α,β
k−`1+λ,0+µ ,

ρ̃ = [L, Y1 . . . Y`1 ]u .

If (α−, α+) is a regularity interval and µ = 0, by the inductive hypothesis we
have ρ̃ ∈ Cα,βk−`0+λ and from ũ ∈ Cα−1,β

k+m−`0−1+λ, α − 1 > α−, it follows that ũ ∈
Cα,βk−`0−1+m+λ, thus u ∈ Cα,βk+m+λ,`0+1 and the inductive step is completed. On
the other hand if (α−, α+) is a strong regularity interval and µ ∈ (0, 1] then ũ ∈
Cα,βk−`0+m+λ, ρ̃ ∈ Cα,βk−`0+1+λ,1 ⊂ Cα,βk−`0+1+λ,0+µ, therefore ϕ̃ ∈ Cα,βk−`0+λ,0+µ and for
0 < x ≤ x0 we have , with v′ = v + v′′, for some fixed v′′ (cf. the beginning of this
chapter for the meaning of ũ(x, v)− ũ(x, v′), etc.)

L(x, v)(ũ(x, v)− ũ(x, v′)) = ψ(x, v) ,

|ψ(x, v)| ≡
∣∣∣(L(x, v′)− L(x, v)

)
ũ(x, v′) + ϕ̃(x, v)− ϕ̃(x, v′)

∣∣∣
≤ C

(
‖f‖Cα,β

`0,`0+µ
(Mx0 ) + ‖a‖C0

`0,`0+µ
(Mx0 )‖u‖Cα,β

m+`0,`0−1+µ
(Mx0 )

)
xα(1 + | lnx|β)|v − v′|µ ,

and similarly, for higher derivatives,

‖ψ‖Cα,β
k−`0

(Mx0 ) ≤ C
(
‖f‖Cα,β

k,`0+µ
(Mx0 ) + ‖a‖C0

k,`0+µ
(Mx0 )‖u‖Cα,β

k+m,`0
(Mx0 )

)
|v − v′|µ ,

(1.32)

‖ψ‖Cα,β
k−`0+λ

(Mx0 ) ≤ C
(
‖f‖Cα,β

k+λ,`0
(Mx0 ) + ‖a‖C0

k+λ,`0
(Mx0 )‖u‖Cα,β

k+m+λ,`0
(Mx0 )

)
(1.33)
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(cf. (1.13)–(1.18)). The definition of the strong regularity interval and (1.30) imply

|ũ(x, v)− ũ(x, v′)| ≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Ck+m+λ(Mx1,x0 )

)
xα(1 + | lnx|)β |v − v′|µ .

(1.34)

If `0 < k, µ = 1, passing to the limit v → v′ one obtains from (1.34)

|∂vũ| ≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Ck+m+λ(Mx1,x0 )

)
xα(1 + | lnx|)β

because ũ ∈ Cα,βk+m−`0(Mx0) ⊂ C loc
k+m−`0(Mx0) ⊂ C loc

1 (Mx0), which gives ∂vũ ∈
Cα,β0 (Mx0). The scaling estimates applied to the equation (1.31) with `1 = `0 + 1
give ∂vũ ∈ Cα,βk+m−`0−1+λ(Mx0), together with the inequality

‖∂vũ‖Cα,β
k+m−`0−1+λ

(Mx0 ) ≤ C
(
‖f‖Cα,β

k+λ,`0+1(Mx0 ) + ‖u‖Ck+m+λ(Mx1,x0 )

)
,

therefore u ∈ Cα,βk+m+λ,`0+1(Mx0), and it holds that

‖u‖Cα,β
k+m+λ,`0+1(Mx0 ) ≤ C

(
‖f‖Cα,β

k+λ,`0+1(Mx0 ) + ‖u‖Ck+m+λ(Mx1,x0 )

)
,

which completes the induction step.
We have thus shown that u ∈ Cα,βk+m+λ,`(Mx0), and it remains to show the

tangential Hölder continuity of the `0 = `’th tangential derivatives of u. Set
û(x, v) = ũ(x, v)− ũ(x, v + v′′), for ŷ = (x̂, v̂) ∈Mx0/2 consider the functions

Bn0 (1/2) 3 y −→ ûŷ(y) = ũ(x̂y + ŷ) x̂−α(1 + | log x̂|)−β ,

Bn0 (1/2) 3 y −→ ψŷ(y) = ψ(x̂y + ŷ) x̂−α(1 + | log x̂|)−β ,
where Bn0 (r) is an open ball in Rn of radius r centered at the origin. From (1.32)–
(1.33) we have

‖ψŷ‖Ck−`0 (Bn
0 (1/2))

≤ C
(
‖f‖Cα,β

k,`0+µ
(Mx0 ) + ‖u‖Cα,β

k+m,`0
(Mx0 )

)
|v′′|µ ,

(1.35)

‖ψŷ‖Ck−`0+λ(Bn
0 (1/2)

≤ C
(
‖f‖Cα,β

k+λ,`0
(Mx0 ) + ‖u‖Cα,β

k+m+λ,`0
(Mx0 )

)
.

(1.36)

(1.35), (1.34) and the Lp interior elliptic estimates (cf. (1.23)) give

‖ûŷ‖Wp
k−`0+m

(Bn
0 (1/4),dny) ≤ C(‖ψŷ‖Wp

k−`0
(Bn

0 (1/2),dny) + ‖ûŷ‖Lp(Bn
0 (1/2),dny))

≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Cα,β

k+m,`0
(Mx0 )

)
|v′′|µ ,

so that from Sobolev’s embedding one gets, for any λ′ ∈ [0, 1),

‖ûŷ‖Ck−`0+m−1+λ′ (Bn
0 (1/4))

≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Cα,β

k+m,`0
(Mx0 )

)
|v′′|µ =⇒

‖û‖Cα,β

k−`0+m−1+λ′
(Mx0/2)

≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Cα,β

k+m,`0
(Mx0 )

)
|v′′|µ =⇒

‖u‖Cα,β

k+m−1+λ′,`0+µ
(Mx0 ) ≤ C

(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 )+‖u‖Cα,β

k+m,`0
(Mx0 )+‖u‖Ck+m−1+λ′ (Mx0/2,x0 )

)
.

To get control of the k− `0 +m’th derivatives of ũ some more work is required. By
interpolation (cf. e.g. [44, Theorem A.5]) from (1.35)–(1.36) for any σ ∈ (0, 1) one
obtains

‖ψŷ‖Ck−`0+σλ(Bn
0 (1/2))

≤ C‖ψŷ‖σCk−`0 (Bn
0 (1/2))

‖ψŷ‖1−σ
Ck−`0+λ(Bn

0 (1/2))
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≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Cα,β

k+m+λ,`0
(Mx0 )

)
|v′′|(1−σ)µ ,

and elliptic interior Hölder estimates give

‖ûŷ‖Ck−`0+m+σλ(Bn
0 (1/4))

≤ C(‖ψŷ‖Ck−`0+σλ(Bn
0 (1/2))

+ ‖ûŷ‖C0(Bn
0 (1/2))

)

≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Cα,β

k+m+λ,`0
(Mx0 )

)
|v′′|(1−σ)µ ,

so that ũ ∈ Cα,βk+m−`0+σλ,(1−σ)µ, and for all |γ| ≤ k +m− `0 we have∣∣∣(x∂y)γ
(
ũ(x, v)−ũ(x, v′)

)∣∣∣ ≤ C
(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 )+‖u‖Cα,β

k+m+λ,`0
(Mx0 )

)
xα(1+| lnx|)β |v−v′|(1−σ)µ .

Since u ∈ Cα,βk+m+λ,`0
it follows that u ∈ Cα,βk+m+λ,`0+µ′

, with

‖u‖Cα,β

k+m+σλ,`0+(1−σ)µ
(Mx0 ) ≤ C

(
‖f‖Cα,β

k+λ,`0+µ
(Mx0 ) + ‖u‖Cα,β

k+m+λ,`0
(Mx0 )

)
,
(1.37)

and (1.27) follows by (1.30). 2

Note that the argument of the last part of the proof of Theorem 1.3 proves the
following Lemma, which shall be needed later on:

Lemma 1.4. Let L ∈ OPm
C0

k+λ,`+µ
(Mx0 )

be a geometric elliptic operator, λ ∈

(0, 1), µ ∈ (0, 1], 0 ≤ ` + µ ≤ k + λ, suppose that u ∈ C loc
m (Mx0) ∩ Cα,β0,`+µ(Mx0)

satisfies
Lu ∈ Cα,βk+λ,`+µ(Mx0) .

Then for all λ′ ∈ (0, 1), µ′ ∈ [0, µ) we have

u ∈ Cα,βk+m−1+λ′,`+µ(Mx0/2) ∩ Cα,βk+m+λ,`+µ′(Mx0/2) .

Moreover for all λ′ ∈ (0, 1), µ′ ∈ [0, µ) there exists a constant C depending only
upon n=dimM , N (cf. eq. (1.1)), the ellipticity constants c1, c2 of eq. (1.4), the
constant CH of (1.7), the constants in (1.13)–(1.18), ‖a‖C0

k+λ,`+µ
(Mx0 ), λ′ and µ′

such that we have

‖u‖Cα,β

k+m−1+λ′,`+µ
(Mx0/2)

+‖u‖Cα,β

k+m+λ,`+µ′
(Mx0/2)

≤ C

(
‖Lu‖Cα,β

k+λ,`+µ
(Mx0 )+‖u‖Cα,β

0,`+µ
(Mx0 )

)
.

2. Boundary regularity for a class of second order systems

Theorem 1.3 gives some more information about the solutions than Lemma 1.1,
however only for exponents α ∈ (α−, α+). To be able to cover α’s in the interval
(α−,∞), or to obtain more regularity, some other techniques are required, and we
shall from now on restrict our consideration to second order systems1, for which L
can be written in the form

L = Lab + L̃ , (2.1)
Lab = (x2∂2

x + ax∂x + b)⊗ idRN , (2.2)

L̃ = x2axA
∂

∂x

∂

∂vA
+ x2aAB

∂

∂vA
∂

∂vB
+ xaA

∂

∂vA

+x3ψ
∂2

∂x2
+ x2ϕ

∂

∂x
+ xχ , with xψ, xϕ and xχ− o(1) , (2.3)

1It should, however, be noted that several of the arguments given here would apply to higher
order systems as well.
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where idRN is the N ×N identity matrix, and a and b are real constants satisfying

(1− a)2

4
− b > 0 . (2.4)

Moreover axA, aAB , aA, xψ, xϕ and xχ are N × N matrices the entries of which
are bounded functions of y. Note that one can redefine L by multiplying it by an
appropriate (non–degenerate) matrix from the left (this might perhaps necessitate
a decrease of x0) to obtain ψ ≡ 0 in Mx0 . We shall often write Lab in the form
Lab = x2∂2

x + ax∂x + b, hoping that no confusion will occur. As will be seen in the
following chapters, (2.1)–(2.3) are sufficient for the applications we have in mind
— the constraint equations of general relativity. All subsequent results are based
on an analysis of the ODE2

Labu = f ,

solutions of which are given by

u = Axµ− +Bxµ+ +Gx0(f) , (2.5)

Gx0(f)(x) =
1

µ+ − µ−

{
− xµ+

∫ x0

x

s−1−µ+f(s) ds− xµ−
∫ x

0

s−1−µ−f(s) ds
}
,(2.6)

assuming that the integrals in (2.6) converge. Here the indicial roots µ± are given
by

µ± =
1− a

2
±
√

(1− a)2

4
− b , (2.7)

and we will assume throughout that (2.4) holds. If u = o(xµ−), f = O(xα), α > µ−,
then A = 0. For α > µ+ one can replace Gx0(f) in (2.5) by

G0(f) =
1

µ+ − µ−

{
xµ+

∫ x

0

s−1−µ+f(s) ds− xµ−
∫ x

0

s−1−µ−f(s) ds
}
,

(2.8)

and it will be convenient to do so.
Let us discuss shortly the relationship between µ± and a weighted Hölder space

regularity interval (α−, α+). When ψ = 0, ϕ = ϕ(x), χ = χ(x), by consider-
ing v-independent sources and solutions it follows immediately that (α−, α+) ⊂
(−∞, µ+), and that µ− 6∈ (α−, α+). For the standard Laplacian on hyperbolic
space (which is an operator in the class considered here) it is known that (α−, α+) 6⊂
(−∞, µ−) (in fact (α−, α+) = (µ−, µ+), cf. Section 7), and therefore we shall only
consider the case

µ− ≤ α− < α+ ≤ µ+ .

It will be seen that for the equations considered in Section 7 we have α± = µ±,
and we expect this to always hold for operators of the form (2.1)–(2.4). In fact
Theorem 2.1 in the next Section shows that one may (in some sense, made precise
there) assume that α+ = µ+ for sufficiently smooth sources.

Let us emphasize that the reason for considering here the possibility that α− 6=
µ−, or α+ 6= µ+, or both, is not because we expect this to be a real feature of
some operators. Rather, this is motivated by the fact that for some equations it
might be possible to prove the existence of a (perhaps strong) regularity interval

2In the general case the corresponding ODE is usually analyzed by Mellin transform tech-
niques (cf. e.g. [58]); for the special class of equations considered in this paper we have found

it simpler and more elementary to use the fundamental solution representation (2.5). We are
grateful to G.  Lysik and B. Ziemian for pointing out the Mellin transform approach.
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(α−, α+) which is a proper subset of (µ−, µ+), while the known proofs do not allow
one to obtain the full expected range (µ−, µ+) (this is actually what happens in
our analysis of the vector constraint equation in weighted Sobolev spaces, Section
3). We shall nevertheless show that the existence of any strong regularity interval,
or of a regularity interval of length larger than one, is sufficient to conclude some
(perhaps not optimal) classical regularity of solutions at the boundary.

2.1. “Tangential regularity” above the threshold. For α‘s above the
threshold α+ we have the following equivalent of Theorem 1.3:

Theorem 2.1 (Tangential regularity, α ≥ α+). Let (α−, α+) be a strong
regularity interval for Cα,β0+λ(M), β 6∈ B, for a geometric elliptic operator L ∈
OP 2

C0
k+λ,`+µ

(M)
, λ ∈ (0, 1), µ ∈ (0, 1], 1 ≤ ` + µ ≤ k + λ. Suppose that L is of the

form (2.1)–(2.4) with ψ, φ, χ ∈ C0
k−1+λ,`−1+µ(M). Suppose that

µ− ≤ α− < α+ ≤ µ+ , α+ ≤ α .

Let
Lu = f , f ∈ Cα,βk+λ,`+µ(M) , u = O(xα−+ε) , ε > 0 , β 6∈ B .

If ` ≥ `0, where `0 ∈ N is the smallest integer such that α+ + `0 > min(α, µ+),
then there exist σ ∈ (0, 1) and δ > 0 such that for µ′ ∈ [0, µ) and ε > 0 we have

((i)) α < µ+

u ∈ Cα,βk+2+λ,`−`0+µ′(Mx0) ∩ Cα++`0−1+δ
k+2+λ,`−`0+1+σ(Mx0) . (2.9)

((ii)) α = µ+ , β 6= −1

u ∈ Cµ+,β+1
k+2+λ,`−`0+µ′(Mx0) ∩ Cα++`0−1+δ

k+2+λ,`−`0+1+σ(Mx0) . (2.10)

((iii)) α > µ+

u ∈ Cµ+
k+2+λ,`−`0+µ′(Mx0) ∩ Cα++`0−1+δ

k+2+λ,`−`0+1+σ(Mx0) . (2.11)

((iv)) If α > µ+ and ` ≥ `1, where `1 ∈ N is the smallest integer such that
α+ + `1 > α, then

u = o(xµ+) =⇒ u ∈ Cα,βk+2+λ,`−`1+µ′(Mx0) ∩ Cα++`1−1+δ
k+2+λ,`−`1+1+σ(Mx0) .

(2.12)

The constants σ and δ depend only upon α+, µ+, α, µ, λ, ` and k. Moreover if F
denotes any of the spaces appearing in eqs. (2.9)–(2.12), then there exists a (u and
f independent) constant C such that

‖u‖F ≤ C
(
‖f‖Cα,β

k+λ,`+µ
(M) + ‖u‖

C
α−+ε

0 (M)

)
. (2.13)

Remark: If (α−, α+) is a regularity interval for Cα,β0+λ(M) only, then the
following modifications are needed above: One has to make the supplementary
assumptions that α− + 1 < α+ and that u = O(xα−+1+ε) for some ε > 0; on the
other hand one can also allow µ = 0. Then eqs. (2.9)–(2.12) hold with µ′ = 0 and
without the claim about the appropriate decay of the transverse derivatives of order
`− `∗ + 1, `∗ = `0 or `∗ = `1.

Proof: In what follows we shall assume that µ = 0, µ′ = 0, etc., if (α−, α+) is
not a strong regularity interval. From (2.1) it follows that u satisfies the equation

Labu = f − L̃u , (2.14)
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and by Theorem 1.3 for any ε > 0 and µ′ ∈ [0, µ) if µ > 0, µ′ = 0 otherwise we have
u ∈ C

α+−ε
k+2+λ,`+µ′ , thus L̃u ∈ C

1+α+−ε
k−1+λ,`−1+µ′ ∩ C

α+−ε
k+λ,`+µ′ (cf. (2.4)–(2.6)). Solving

the ODE (2.14) and choosing ε appropriately we obtain

u = ψxµ+ +Gx0(f − L̃u) = O(xσ(1 + | lnx|)ρ) , (2.15)

for some function ψ(v), with

α+ ≤ α < 1 + α+ , α < µ+ =⇒ σ = α, ρ = β ,

α+ ≤ α < 1 + α+ , α = µ+, β 6= −1 =⇒ σ = µ+, ρ = β + 1 ,
α+ ≤ α < 1 + α+ , α > µ+ =⇒ σ = µ+, ρ = 0 ,

1 + α+ ≤ α =⇒ σ = min(µ+, 1 + α+ − ε), ρ = 0 .

The scaling estimates, Lemma 1.1, imply u ∈ Cσ,ρk+2+λ. Setting x = x0/2 in (2.15)
from L̃u ∈ C

α+−ε
k+λ,`+µ′ we get Gx0(f − L̃u)

∣∣
x=x0/2

∈ C`+µ′(∂M) (cf. (4.14)), which
together with u(x0/2, ·) ∈ Ck+2+λ(∂M) shows that ψ ∈ C`+µ′(∂M). This in turn
shows that we can v-differentiate (2.15): for 0 ≤ i ≤ `− 1 let Xi = Xi

A(v) ∂
∂vA be

vector fields with Xi
A ∈ C∞(∂M). (2.15) gives

0 ≤ i ≤ `− 1 X1 · · ·Xiu = X1 · · ·Xi ψ x
µ+ +Gx0(X1 · · ·Xi(f − L̃u))

= O(xσ(1 + | lnx|)ρ) ,
(2.16)(

X1 · · ·Xiu
)

(x, v)−
(
X1 · · ·Xiu

)
(x, v′) = O(xσ(1 + | lnx|)ρ|v − v′|µ

′
) ,

(2.17)

this last inequality being uniform in |v − v′|. The equations

LX1 · · ·Xiu = X1 · · ·Xif + [L,X1 · · ·Xi]u (2.18)

interior elliptic estimates and a scaling argument yield X1 · · ·Xiu ∈ Cσ,ρk+2−i+λ,
i ≤ `− 1 and thus u ∈ Cσ,ρk+2+λ,`−1. If (α−, α+) is a strong regularity interval, then
Lemma 1.4 and eq. (2.17) show that u ∈ Cσ,ρk+2+λ,`−1+µ′ , for any µ′ ∈ [0, µ).

One can now repeat the whole argument `0 − 1 times, where `0 is the smallest
integer such that α+ + `0 > min(α, µ+) (note that at each iteration one loses
one degree of tangential differentiability of u) to obtain u ∈ C σ̃,ρk+λ,`−`0+µ′ , with
σ̃ = min(α, µ+), provided ` ≥ `0. Finally if α > µ+ and u = o(xµ+) then eq. (2.15)
holds with Gx0 replaced by G0 and with ψ = 0. Repeating the argument `1 − `0
times more, where `1 is the smallest integer such that α+ + `1 > α, one obtains
u ∈ Cα,βk+2+λ,`−`1+µ′ .

To obtain the claimed decay of the `− i0 + 1 transverse derivatives in the case
of a strong regularity interval, where i0 = `0 or i0 = `1, note that at the last step
of the iteration above we shall have, for any ε > 0 and µ′ ∈ (0, µ),

u ∈ Cmin(α,µ+),β+1
k+2+λ,`−i0+µ′(Mx0) ∩ Cα++i0−1−ε

k+2+λ,`−i0+1+µ′(Mx0) . (2.19)

We have the following:

Lemma 2.2. Under the hypotheses of Theorem 2.1, suppose that

u ∈ Cσ1,ρ
k+2+λ,`+µ′(Mx0) ∩ Cσ0,ρ

k+2+λ,`−1+µ′(Mx0) , σ1 < σ0 , 0 < µ′ < µ ,

with
0 < x ≤ x0 xα(1 + | lnx|)β ≤ Cxσ0(1 + | lnx|)ρ .
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Then for all 0 < θ < 1, 0 ≤ t < `+ µ′ − θ we have

u ∈ Cθσ0+(1−θ)σ1,ρ
k+2+λ,t (Mx0) .

Proof: Set ux(v) = u(x, v), and for 0 ≤ t0 < t1 define t = θt0 + (1− θ)t1. We
have the interpolation inequality (cf. e.g. [44] [Appendix A] or [69, p. 236])

‖ux‖Ct(∂M) ≤ C‖ux‖θCt0 (∂M)‖ux‖
1−θ
Ct1 (∂M) .

Setting t0 = `− 1 + µ′, t1 = `+ µ′ we obtain

u ∈ Cθσ0+(1−θ)σ1,ρ
0,`+µ′−θ (Mx0) ,

and the result follows from Lemma 1.4. 2

Returning to the proof of Theorem 2.1, let θ be any number smaller than µ′

and let 2σ = µ′ − θ > 0. Eq. (2.19) and Lemma 2.2 give

u ∈ Cα++i0−1+δ
k+2+λ,`−i0+1+σ(Mx0) ,

with
δ = θ(α− i0 + 1− α+ + µ′)− (1− θ)ε .

As ε can be chosen arbitrarily small we have δ > 0, and the result follows. 2

In Proposition 1.2 we have proved that if L is an isomorphism in weighted
Hölder spaces “close to the boundary ∂M” for an interval of weights (α−, α+),
then (α−, α+) is a regularity interval for weighted Hölder spaces. The follow-
ing result shows, that an isomorphism property “close to the boundary ∂M” in
weighted Sobolev spaces for an interval (ω−, ω+) implies that

(
max(ω−, µ−)+(n−

1)/p,min(ω+ + (n − 1)/p, µ+)
)

is a regularity interval for weighted Hölder spaces
with tangential regularity:

Theorem 2.3. Let p ∈ (1,∞), and let L ∈ OP 2
C0

k+λ,`+µ
(M)

be a geometric

elliptic operator, (n− 1)/p < ` ≤ k, λ ∈ (0, 1), µ ∈ [0, 1]. Suppose that (2.1)–(2.4)
hold with ψ, φ, χ ∈ C0

k−1+λ,`−1+µ(M). Assume that for all ω ∈ (ω−, ω+) there
exists 0 < x1 ≤ x0 (possibly depending upon ω) such that

L :
◦
W

ω;p
1 ∩Wω;p

2 (Mx1 , g, x
−ndµg) →Wω;p

0 (Mx1 , x
−ndµg)

is an isomorphism, with µ− ≤ ω− < min
(
ω+, µ+ − n−1

p

)
.

((i)) Let u ∈W p,loc
2 (M) satisfy

Lu = f , f ∈ Cα,βk+λ,`+µ(M) , (2.20)

with α ∈ (α−, α+), where

(α−, α+) =
(
ω− +

n− 1
p

,min
(
µ+, ω+ +

n− 1
p

))
, (2.21)

suppose that either

u = O(xα−+ε) , ε > 0 , (2.22)

or

u ∈Wω;p
0 (Mx1 , x

−ndµg) , ω > ω− . (2.23)
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Then for all µ′ ∈ [0, µ) if µ > 0, µ′ = 0 otherwise we have

u ∈ Cα,βk+2+λ,`1+µ′
(Mx1) , (2.24)

where `1 ∈ N0 is the largest integer such that `1 < ` − (n − 1)/p.
Moreover there exists a (u and f independent) constant C such that

‖u‖Cα,β
k+2+λ,`1+µ

(Mx1 ) ≤ C(‖f‖Cα,β
k+λ,`+µ

(M) + ‖u‖
C0(CMx1/2)

) .
(2.25)

((ii)) For any u0 ∈ Ck+λ(∂M) there exists a solution of (2.20) satisfying
(2.24) such that

u(x1, v) = u0(v) . (2.26)

u is unique in the class of solutions satisfying either (2.22) or (2.23).

Remarks:

((i)) The results proved below are unsatisfactory in two respects: 1) it would
be more natural to assume µ− − (n− 1)/p ≤ ω− rather then µ− ≤ ω−;
2) u is “less tangentially regular” then f .

((ii)) Let us note that under the hypotheses of Theorem 2.3 we must have

µ+−n−1
p 6∈ (ω−, ω+): suppose to the contrary that L :

◦
W

ω;p
1 ∩Wω;p

2 (Mx1 , g, dµg) →
Wω;p

0 (Mx1 , dµg) is an isomorphism for ω ∈ (ω−, ω+) and that µ+ −
n−1
p ∈ (ω−, ω+). Set ρ = L(ϕxµ+), where ϕ(x) is a C∞(R) function

satisfying ϕ = 1 for 0 ≤ x ≤ x1/2, ϕ = 0 for x ≥ 3x1/4. If L is of the

form (2.1)–(2.4), then for any 0 ≤ ε < 1 we have ρ ∈Wµ+−n−1
p +ε;p

k,` , and
if µ+ − n−1

p ∈ (ω−, ω+) we can choose ε so that ωε = µ+ − n−1
p + ε ∈

(ω−, ω+), therefore there exists uε ∈
◦
W

ω;p
1 ∩ Wωε;p

2 such that Luε =

ρ
∣∣
Mx1

. Now for any ε > 0, ϕxµ+ 6∈Wµ+−n−1
p +ε;p

2 , therefore uε 6= ϕxµ+ .

From ϕxµ+ ∈
◦
W

µ+−n−1
p −δ;p

1 ∩Wµ+−n−1
p −δ;p

2 for all δ > 0 it follows that

0 6= uε−ϕxµ+ ∈
◦
W

µ+−n−1
p −δ;p

1 ∩Wµ+−n−1
p −δ;p

2 , but L(uε−ϕxµ+) = 0,

which contradicts injectivity of L on
◦
W

µ+−n−1
p −δ;p

1 ∩ Wµ+−n−1
p −δ;p

2 ,
when δ is chosen small enough so that µ+ − n−1

p − δ ∈ (ω−, ω+). Sim-
ilarly one can show that if e.g. L ∈ OP 2

Ck+λ(M̄)
with k large enough,

then µ− − n−1
p cannot be larger than ω−.

Proof: (i): It follows from Lemma 1.1 that for ω ∈ (ω−, ω+) the map L :
◦
W

ω;p
1 ∩Wω;p

k+2 →Wω;p
k is an isomorphism, and Proposition 1.2 shows that (ω−, ω+)

is a strong regularity interval. Let ϕ ∈ C∞(M) be any function satisfying ϕ
∣∣
Mx1/2

=

1, ϕ
∣∣
CMx1

= 0, replacing u by ϕu if necessary we may without loss of generality
assume u(x1, v) = 0. It is convenient to structure the proof in several steps:

Step 1: Uniqueness of solutions in weighted Hölder spaces: Let

Lu = 0 , u ∈ Cα1,β1
2 (Mx1) , α1 > ω− + (n− 1)/p , u(x1, v) = 0 .

For all ω < α1 − (n − 1)/p we have u ∈
◦
W

ω;p
1 ∩Wω;p

2 , and if ω− < α1 − (n − 1)/p
we can choose ω so that ω ∈ (ω−, ω+) — u = 0 follows from injectivity of L as an

operator from
◦
W

ω;p
1 ∩Wω;p

2 to Wω;p
0 .
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Step 2: Existence of a solution in a weighted Sobolev space with some decay
exponent: since f ∈ Cα,βk+λ, for all ω < α − (n − 1)/p we have f ∈ Wω;p

k , thus if
ω− + (n − 1)/p < α we can choose ω ∈ (ω−, ω+). Since L as an operator from
◦
W

ω;p
1 ∩ Wω;p

k+2 to Wω;p
k is surjective, there exists u ∈

◦
W

ω;p
1 ∩ Wω;p

k+2 which solves
(2.20).

Step 3: Let u ∈
◦
W

ω;p
1 ∩W p,loc

2 , ω− < ω < ω+, satisfy (2.20). By the scaling
estimates of Lemma 1.1 we have u ∈Wω;p

k+2, and by point (ii) of Theorem 1.3 u is in

Wω;p
k+2,`. By Step 2 for any ω− < ω′ < α− (n− 1)/p there exists u′ ∈

◦
W

ω′;p
1 ∩Wω′;p

k+2

which satisfies (2.20), uniqueness of solutions in
◦
W

ω′;p
1 ∩Wω′;p

k+2 implies u′ = u, and
therefore for any δ > 0 we can choose ω such that we have α− (n− 1)/p− δ < ω,
and ω 6= α. Similarly we may assume that the exponent ω in (2.23) satisfies
ω > α− (n− 1)/p− δ, ω 6= α. For y = (x, v) ∈Mx1/2 consider the function

ũ(ỹ) = x−ω u
(
y +

x

2
ỹ
)
, ỹ ∈ Bn0 (1) ,

where Bn0 (σ) is an open ball in Rn of radius σ centred at the origin. From the
interior Ck+λ and Lp elliptic estimates combined with Sobolev’s embedding it is
easily shown that there exists a constant C such that

‖ũ‖
Ck+2+λ(Bn

0 (1/2))
≤ C

{
‖L̃u‖

Ck+λ(Bn
0 (1))

+ ‖ũ‖Lp(Bn
0 (1),dµ̃)

}
,

(2.27)

L̃u(ỹ) = x−ωLu
(
y +

x

2
ỹ
)
, dµ̃(ỹ) =

√
det gij(y +

x

2
ỹ) dnỹ .

From the straightforward inequality

‖ũ‖Lp(Bn
0 (1),dµ̃) ≤ C‖u‖Wω;p

0 (Mx1 ,x
−ndµg)

for some constant C, combined with (2.27), it follows that u ∈ Cωk+2+λ.
Step 4: Let us show by induction that:
(i) u ∈ Cωk+2+λ,`(Mx1).
(ii) Let `∗ be an integer in [1, `]. If u ∈ C∗k+2+λ(Mx1) and if ∂γvu = O(“x∗”),

0 ≤ |γ| ≤ `∗ (cf. Step 6), then u ∈ C∗k+2+λ,`∗
(Mx1). Here ∗ is either equal to some

number ω̂ (and then “x∗”= xω̂, or ∗ = α, β (and then “x∗”= xα(1 + | lnx|)β). We
also assume that x∗ ≥ xα(1 + | lnx|)β .

Indeed, suppose that u ∈ C∗k+2+λ,`0
. In case (i) this holds for ∗ = ω and `0 = 0

by Step 3; in case (ii) this holds by the inductive assumption. Let X1, . . . , Xi be
any smooth vector fields of the form XA(v) ∂

∂vA , XA(v) ∈ C∞(∂M). Let ui =
X1 · · ·Xiu, fi = X1 · · ·Xif . In case (i) for `0 + 1 ≤ ` and in case (ii) for `0 + 1 ≤ `∗
we have

Lu`0+1 = f`0+1 + [L,X1 · · ·X`0+1]u ∈ Cα,βk−`0−1+λ + C∗k+1−`0+λ .

Note that in case (i) we have u ∈Wω;p
k+2,` (cf. Step 3), so that for `0 +1 ≤ ` we have

u`0+1 ∈Wω;p
k−`0−1; setting ũ`0+1(ỹ) ≡“x−∗”u`0+1

(
y + x

2 ỹ
)

, ỹ ∈ Bn0 (1) we obtain

‖ũ`0+1‖Lp(Bn
0 (1),dµ̃) ≤ C‖u`0+1‖Wω;p

0 (Mx1 ,x
−ndµg) .

Applying now the estimate (2.27) to the function ũ`0+1 ends the induction.
Step 5: Suppose that u = O(xα−+ε). By the scaling estimates of Lemma 1.1

we have u ∈ C
α−+ε
k+2+λ, by existence of a solution as considered in step 4 and by
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uniqueness of solutions in weighted Hölder spaces, step 1, it follows that decreasing
ε if necessary we can assume ω = α− + ε > ω− ≥ µ−, ω 6= α.

Step 6: The functions ui defined in step 4 satisfy the ODE’s

Lab ui = fi −X1 · · ·Xi L̃u ,

and since ui = O(xω), ω > µ−, we have

ui = ψi x
µ+ +G(fi)−G(X1 · · ·Xi L̃u) , (2.28)

G ≡ Gx1 , for some functions ψi(v). Since u ∈ Cωk+2+λ,`(Mx1) ⊂ C loc
` (Mx1),

X1 · · ·Xi L̃u ∈ C loc
`−i(Mx1) (cf. (2.4)–(2.6)), G(X1 · · ·Xi L̃u) ∈ C loc

`−i(Mx1), (cf.
(4.2)–(4.4)), G(fi) ∈ C loc

`−i(Mx1), setting x = x1/2 in (2.28) we obtain ψi ∈
C`−i(∂M), in particular ψi is bounded. We thus have

ψi x
µ+ = O(xµ+) ,

G(fi) = O(xα(1 + | lnx|)β) ,

0 ≤ i ≤ `− 1 G(X1 · · ·XiL̃u) = O(xω+1) ,

which gives for 0 ≤ i ≤ `− 1

a) ω + 1 > α =⇒ ui = O(xα(1 + | lnx|)β) (2.29)
b) ω + 1 < α =⇒ ui = O(xω+1) (2.30)

From (2.27) we obtain u ∈ C∗k+2+λ, where ∗ = ω + 1 or ∗ = α, β.
Step 7 (and final): We can go through step 4 again to conclude either u ∈

Cα,βk+2+λ,`−1 in case a), or u ∈ Cω+1
k+2+λ,`−1 in case b). After going through steps

6 and 4 at most k1 times, where k1 is the smallest integer larger than n−1
p , one

obtains u ∈ Cα,βk+2+λ,`−k1 ; if µ > 0 the above considerations applied to difference
quotients together with Lemma 1.4 give u ∈ Cα,βk+2+λ,`−k1+µ′ for all µ′ ∈ [0, µ). The
inequality (2.25) follows by noting that every step above “comes equipped” with
an appropriate inequality, the details are left to the reader.

(ii): Existence of some solution follows from Step 2 above in a standard way;
uniqueness follows from Steps 1 and 5; regularity follows from point (i) of the
Theorem. 2

Combining the results of Theorem 2.3 with the arguments of Theorem 2.1 we
obtain:

Theorem 2.4. Let p ∈ (1,∞), and let ˆ̀ be the smallest integer larger than
(n − 1)/p. Let L ∈ OP 2

C0
k+λ,`+ˆ̀+µ

(M)
be a geometric elliptic operator and suppose

that ˆ̀+ ` ≤ k, λ ∈ (0, 1), µ ∈ (0, 1], ` ≥ 1. Suppose moreover that (2.1)–(2.4)
hold with ψ, φ, χ ∈ C0

k−1+λ,`+ˆ̀−1+µ
(M), and that for all ω ∈ (ω−, ω+) there exists

0 < x1 ≤ x0 (possibly depending upon ω) such that

L :
◦
W

ω;p
1 ∩Wω;p

2 (Mx1 , g, x
−ndµg) →Wω;p

0 (Mx1 , x
−ndµg)

is an isomorphism, with µ− ≤ ω− < min
(
ω+, µ+ − n−1

p

)
. Let u ∈ W p,loc

2 (M)
satisfy

Lu = f , f ∈ Cα,β
k+λ,ˆ̀+`+µ

(M) , (2.31)
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with α ≥ α+, where

(α−, α+) =
(
ω− +

n− 1
p

,min
(
µ+, ω+ +

n− 1
p

))
. (2.32)

Suppose finally that either

u = O(xα−+ε) , ε > 0 , (2.33)

or

u ∈Wω;p
0 (Mx1 , x

−ndµg) , ω > ω− . (2.34)

If ` ≥ `0, where `0 is the smallest integer such that α+ + `0 > min(α, µ+), then
there exist σ ∈ (0, 1) and δ > 0 such that for µ′ ∈ [0, µ) eqs. (2.9)–(2.12) hold.
The constants σ and δ depend only upon ω+, µ+, α, µ, λ, `, (n − 1)/p and k.
Moreover the a–priori estimate (2.13) holds with a (u and f independent) constant
C provided that the norm ‖f‖Cα,β

k+λ,`+µ
(M) there is replaced by ‖f‖Cα,β

k+λ,`+ˆ̀+µ
(M).

2.2. Classical regularity at the boundary. In this section we shall estab-
lish boundary regularity of solutions of the problem

Lu = f, f ∈ xαCk+λ(M̄) . (2.35)

The following Lemma reduces this problem to that of regularity of solutions of

Lu = f, f ∈ Ck+α,βk+λ,0+λ(M) ∩ Ck+α+λ,β
k+λ (M), β = 0 or β = 1 .

Lemma 2.5. Let k ∈ N0, λ ∈ [0, 1], and let an operator L ∈ OP 2
Ck+λ(M̄)

satisfy
(2.1)–(2.4). Suppose that

f ∈ xαCk+λ(M̄), α > µ− .

((i)) Suppose moreover that α+ k < µ+ or that µ+ − α 6∈ N0. There exists
a function û ∈ Cα∞(M) ∩i∈N0 x

α−iCk+i+λ(M̄) such that

Lû− f ∈ Ck+αk+λ,0+λ(M) ∩ Ck+α+λ
k+λ (M) . (2.36)

((ii)) Suppose alternatively that α + k > µ+ and µ+ − α ∈ N0, set k1 =
µ+ − α. There exist functions û ∈ Cα∞(M) ∩i∈N0 x

α−iCk+i+λ(M̄) and
ûlog ∈ Cµ+

∞ (M) ∩i∈N0 x
µ+−iCk−k1+i+λ(M̄) such that

L(û+ ûlog log x)− f ∈ Ck+α,1k+λ,0+λ(M) ∩ Ck+α+λ,1
k+λ (M) . (2.37)

Proof: We shall prove point (i) assuming λ > 0; point (i) with λ = 0 and
point (ii) are proved by a similar argument. Suppose that for some ` satisfying
−1 ≤ ` ≤ k − 1 we have found a function u` ∈ Cα∞ such that x−α(Lu` − f) is in
Ck+λ(M̄) and has vanishing Taylor expansion at ∂M up to order ` (cf. Proposition
1.1); the result is true for ` = −1 if one sets u−1 ≡ 0. Let x−αw` be obtained from
Lemma 3.1 with m = ` + 1 as an extension of a function ψ` ∈ Ck−`−1+λ(∂M) to
be specified below. By eqs. (3.1)–(3.2) and (2.1)–(2.3) we have

Lw` − Labw` ∈ Cα+`+1+λ
0 (M)

(note that the second term in eq. (3.2) drops out when at least one of the deriva-
tives there is a v–derivative). By hypothesis it holds that µ+ − ` − 1 6= α and a
straightforward calculation (cf. e.g. the proof of Theorem 2.8) shows that we can
choose ψ` so that the function x−αLu`+1 ≡ x−αL(u` + w`) is in Ck+λ(M̄) and
vanishes to order `+ 1 at the boundary. The remaining claims follow by properties
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of the extension operator E of Lemma 3.1 (cf. eq. (3.4)), using arguments similar
to those of the proof of Corollary 3.2. 2

We are ready now to prove the following:

Theorem 2.6 (Classical boundary regularity, α ∈ (α−, α+)). Let (α−, α+)
be a strong regularity interval for Cα0+λ(M) for a geometric elliptic operator L ∈
OP 2

Ck+λ(M̄)
, λ ∈ (0, 1), suppose that L is of the form (2.1)–(2.4), and that

Lu = f ∈ xαCk+λ(M̄), α ∈ (α−, α+) , u = O(xα−+ε) , ε > 0 .

Let `0 ∈ N0 be the largest integer such that α+ `0 < α+. Then there exists σ > 0
such that

α+ k < α+ =⇒ u ∈ ∩2
i=0x

α−iCk+i+σ(M̄x0) , (2.38)
k > `0 =⇒ u ∈ ∩2

i=0x
α−iC`0+i+σ|k−`0(M̄x0) . (2.39)

The constant σ depends only upon α+, µ+, α, λ and k. Moreover when F de-
notes any of the spaces appearing in eqs. (2.38)–(2.39), then the a–priori estimate
(2.13) holds with a (u and f independent) constant C provided that the norm
‖f‖Cα,β

k+λ,`+µ
(M) there is replaced by ‖f‖xαCk+λ(M̄).

Remarks: 1. The above results are sharp when α+ = µ+, except perhaps for
the value of the modulus of Hölder continuity which we leave unspecified.

2. For α+ < µ+ define ˆ̀
0 ∈ N0 to be the largest integer such that α+ ˆ̀

0 < µ+.
The reader will notice that for α ≤ α+ the arguments of the proof of Theorem 2.9
can be used to show that the right–hand–side of the implication (2.38) holds for all
k ≤ ˆ̀

0; similarly for k > ˆ̀
0 the right–hand–side of the implication (2.39) will hold

with `0 replaced by ˆ̀
0. This is again sharp except for the value of the modulus of

Hölder continuity of u.
3. Under the conditions of (2.39) in the special case µ+−α ∈ N0 one can obtain

some more information about u. This, however, requires different techniques and
will be considered separately in Theorem 2.10 below.

Proof: Suppose first that α+ k < α+, let û be given by Lemma 2.5, by point
(i) of that Lemma and by interpolation (cf. the arguments of proof of Lemma 2.2)
there exists 0 < 2σ < λ such that

L(u− û) ∈ Cα+k+2σ
k+2σ,0+2σ(M) .

By Theorem 1.3 point (i) we have u−û ∈ Cα+k+2σ
k+2+2σ,0+σ(M) ⊂ ∩2

i=0x
α−iCk+i+σ(M̄x0)

(this last inclusion following from Proposition 2.2), and (2.38) follows. Equa-
tion (2.39) follows from the inclusions Cα+k+2σ

k+2σ,0+2σ(M) ⊂ Cα+`0+2σ
k+2σ,k−`0+2σ(M) and

Cα+`0+2σ
k+2+2σ,k−`0+σ(M) ⊂ ∩2

i=0x
α−iC`0+i+σ|k−`0(M̄x0) by the same argument. 2

To obtain classical regularity at the boundary for α’s beyond the threshold α+

some more work is required. The next Lemma will allow us to reduce the problem
to an analysis of those solutions, the decay rate of which is faster than the one
corresponding to the larger critical exponent. The proof proceeds along the lines
of proof of Lemma 2.5.



2. BOUNDARY REGULARITY FOR A CLASS OF SECOND ORDER SYSTEMS 51

Lemma 2.7. Under the hypotheses of Lemma 2.5 let ψ ∈ Ck+λ(∂M). There
exists ψ̂ ∈ ∩i∈N0x

µ+−i Ck+i+λ(M̄) such that

x−µ+ ψ̂
∣∣∣
∂M

= ψ ,

Lψ̂ ∈ Ck+µ+
k+λ,0+λ(M) ∩ Ck+µ++λ

k+λ (M) .

Arguing as in the proof of Theorem 2.1 one obtains the following:

Lemma 2.8. Let L ∈ OP 2
C0

k+λ,k+λ
(M)

, λ ∈ (0, 1), be a geometric elliptic operator

with non–empty strong regularity interval (α−, α+) for Cα0+λ(M). Suppose that L
is of the form (2.1)–(2.4) with ψ, φ, χ ∈ C0

k−1+λ,k−1+λ(M). Let m, ` ∈ N0 and
assume that β ≥ µ− and m ≤ ` ≤ k. If β+m ≥ µ+ assume further that u = o(xµ+).
If

Lu = f , f ∈ Cβ+m+λ
k+λ,0+λ(M) , u ∈ Cβ+λ

k+2+λ,`+λ(M) ,
then there exists σ > 0 such that

u ∈ Cβ+m+σ
k+2+σ,`−m+σ(Mx0) .

We are ready now to prove classical regularity at the boundary above the α+

treshhold in the presence of a regularity interval, or of a strong regularity interval.
To avoid a somewhat tedious and not very enlightning discussion of various cases
we shall only give the proofs when α+ = µ+. It should be clear from the proofs
below how to generalize the argument to the case α+ < µ+, cf. also Remark 1
below.

Theorem 2.9 (Classical boundary regularity, α > α+). Let (α−, α+) be a
strong regularity interval for Cα0+λ(M) for a geometric elliptic operator L ∈ OP 2

Ck+λ(M̄)
,

λ ∈ (0, 1), k ≥ 1, suppose that L is of the form (2.1)–(2.4), and that

Lu = f ∈ xαCk+λ(M̄), α > α+ = µ+ , u = O(xα−+ε) , ε > 0 .

Then there exists σ > 0 such that

u ∈ ∩2
i=0x

µ+−iCk+i+σ(M̄x0) + ∩i∈N0x
α−iCk+i+λ(M̄x0) . (2.40)

In particular, if we denote by `0 ∈ N0 the largest integer such that µ+ + `0 < α,
then we have

((i)) If µ+ + k < α or if α− µ+ ∈ N (or both)

u ∈ ∩2
i=0x

µ+−iCk+i+σ(M̄x0) , (2.41)

((ii)) k > `0

u ∈ ∩2
i=0x

µ+−iC`0+i+σ|k−`0(M̄x0) . (2.42)

If moreover u = o(xµ+) then it also holds that

u ∈ ∩2
i=−kx

µ+−iCk+i+σ(M̄x0) + ∩i∈N0x
α−iCk+i+λ(M̄x0) , (2.43)

and for k ≥ ˜̀, where ˜̀ is the smallest integer such that ˜̀≥ α− µ+, we also have

u ∈ ∩˜̀+2
i=0 x

α−iCk−˜̀+i+σ(M̄x0) . (2.44)

The constant σ depends only upon α+, µ+, α, λ and k. Moreover when F denotes
any of the spaces appearing in eqs. (2.41)–(2.42) or (2.44), then the a–priori esti-
mate (2.13) holds with a (u and f independent) constant C provided that the norm
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‖f‖Cα,β
k+λ,`+µ

(M) there is replaced by ‖f‖xαCk+λ(M̄). Similarly if F1, F2 denote any

of the summand spaces in eqs. (2.40) and (2.43), we have the a priori estimate

‖u‖F1⊕F2 ≤ C
(
‖f‖CxαCk+λ(M̄)

+ ‖u‖
C

α−+ε

0 (M)

)
. (2.45)

Remarks: 1. If α+ < µ+ one can still obtain some classical regularity of
the solutions, the results being somewhat worse than in the case α+ = µ+. More
precisely, we have the following: If α+ < α < µ+ and if k ≥ `1, where `1 is the
smallest integer larger than α− α+, then the implications (2.38)–(2.39) hold when
k is replaced by k − `1 at both sides of those implications. Similarly if α > µ+

and k ≥ `2 + 1, where `2 is the smallest integer larger than or equal to µ+ − α+,
then eqs. (2.40)–(2.44) hold with, however, k replaced by k − `2; this substitution
should be done in both members of the implication (2.41). For the validity of (2.42),
respectively of (2.44), the condition k > `0, respectively k ≥ ˜̀, should of course be
replaced by k > `0 + `2, respectively k ≥ ˜̀+ `2. In all cases discussed here one has
the corresponding a–priori estimates.

2. If (α−, α+) is only a regularity interval for Cα0+λ(M) and if α+ = µ+, then
eqs. (2.40)–(2.44) hold if we moreover assume α− + 1 < α+, u = o(xα−+1+ε) for
some ε > 0 with, however, σ = 0 and k replaced by k − 1; in (2.42) the condition
k > `0 should of course be replaced by k > `0 + 1; similarly for (2.44). If α+ < µ+

then the results discussed in Remark 1 will hold with σ = 0 and with a value of k
further decreased by 1 as compared to the value there.

Proof: In what follows the symbol σ denotes a real number in the interval
(0, λ) the value of which may vary from one expression to the next. Let û be given
by Lemma 2.5, by point (i) of that Lemma and by interpolation (cf. the arguments
of proof of Lemma 2.2) there exists 0 < σ < λ such that

f̃ ≡ L(u− û) ∈ Cα+k+σ
k+σ,0+σ(M) ⊂ C

µ++σ
k+σ,k+σ(M) .

By Theorem 1.3 point (i) for all ε > 0 we have u − û ∈ C
µ+−ε
k+2+σ,k+σ(Mx0) so that

L̃(u − û) ∈ C
µ++1−ε
k−1+σ,k−1+σ(Mx0) ∩ Cµ+−ε

k+σ,k+σ(Mx0); interpolation gives L̃(u − û) ∈
C
µ++σ
k+σ,k+σ(Mx0). We have

u− û = ψxµ+ +G0[f̃ ]−G0[L̃(u− û)] (2.46)

with some function ψ(v), and it follows from this equation at x = x0/2 and from
(4.14) that ψ ∈ Ck+σ(∂M). Let ψ̂ be given by Lemma 2.7, set ũ ≡ u − û − ψ̂, we
then have

Lũ ∈ Cµ++k+σ
k+σ,0+σ(Mx0), ũ = o(xµ+) .

so that we can write

ũ = G0[Lũ]−G0[L̃ũ] . (2.47)

It follows that ũ ∈ C
µ++σ
0,k+σ (Mx0) and Lemma 1.4 gives ũ ∈ C

µ++σ
k+2+σ,k+σ(Mx0).

Lemma 2.8 with β = µ+, λ there replaced by σ, and ` = m = k yields

u− û− ψ̂ ∈ Cµ++k+σ
k+2+σ,0+σ(Mx0) .

Eqs. (2.40)–(2.43) follow now from Proposition 2.2. 2

Similar arguments give the following, no details will be given (note that below
we are not assuming that α+ = µ+):
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Theorem 2.10 (Classical boundary regularity, µ+ − α ∈ N0). Let (α−, α+)
be a strong regularity interval for Cα0+λ(M) for a geometric elliptic operator L ∈
OP 2

Ck+λ(M̄)
, λ ∈ (0, 1), suppose that L is of the form (2.1)–(2.4) and that

α+ ≤ µ+ , α− < α ≤ µ+ , µ+ − α ∈ N0 ,

Lu = f ∈ xαCk+λ(M̄), u = O(xα−+ε) , ε > 0 .

For α ≤ α+ set ` = 0, otherwise let ` be the smallest integer such that α++` > α. If
α+k ≥ µ++`+1, then there exists σ > 0 and ulog ∈ ∩µ+−α+2

i=0 xµ+−i Ck−(µ+−α)+i+λ(M̄)
such that

u− ulog log x ∈ ∩2
i=0x

α−iCk−`+i+σ(M̄x0) . (2.48)

If ulog|∂M = 0, then ulog ≡ 0. The constant σ depends only upon α+, µ+, α, λ and
k. Moreover when F1, F2 denote any of the summand spaces in eq. (2.48), then the
a–priori estimate (2.45) holds with a (u and f independent) constant C.

Remark: If (α−, α+) is only a regularity interval for Cα0+λ(M) and if we
moreover assume that α− + 1 < α+ and u = O(xα−+1+ε) for some ε > 0, then eq.
(2.48) holds with σ = 0 and with k replaced by k − 1.

Theorems 2.6, 2.9 and 2.10 were proved assuming the existence of a (strong)
regularity interval in weighted Hölder spaces. In weighted Sobolev spaces we have
the following corresponding result:

Theorem 2.11. Let p ∈ (1,∞), and let ˆ̀ be the smallest integer larger than or
equal to (n− 1)/p (recall that n = dimM). Let L ∈ OP 2

Ck+ˆ̀+λ(M̄)
, λ ∈ (0, 1) be a

geometric elliptic operator of the form (2.1)–(2.4). Suppose that for all ω ∈ (ω−, ω+)
there exists 0 < x1 ≤ x0 (possibly depending upon ω) such that

L :
◦
W

ω;p
1 ∩Wω;p

2 (Mx1 , g, x
−ndµg) →Wω;p

0 (Mx1 , x
−ndµg)

is an isomorphism, with µ− ≤ ω− < min
(
ω+, µ+ − n−1

p

)
. Define

(α−, α+) =
(
ω− +

n− 1
p

,min
(
µ+, ω+ +

n− 1
p

))
. (2.49)

Let u ∈W p,loc
2 (M) satisfy

Lu = f , f ∈ xαCk+ˆ̀+λ(M̄) , (2.50)

with α > α−. Suppose finally that either

u = O(xα−+ε) , ε > 0 , (2.51)

or

u ∈Wω;p
0 (Mx1 , x

−ndµg) , ω > ω− . (2.52)

Then:
((i)) Consider α ∈ (α−, α+), let `0 ∈ N0 be the largest integer such that

α+ `0 < µ+. There exists σ > 0 such that

α+ k < µ+ =⇒ u ∈ ∩2+ˆ̀

i=0x
α−iCk+i+σ(M̄x0) , (2.53)

k > `0 =⇒ u ∈ ∩2+ˆ̀

i=0x
α−iC`0+i+σ|k−`0(M̄x0) . (2.54)
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((ii)) If α+ < µ+ consider α+ ≤ α < µ+. Define `1 to be the smallest integer
larger than α − α+. If k − `1 ≥ 1, then the implications (2.53)–(2.53)
hold with k − `1 substituted for k at both sides of those implications.

((iii)) If µ+ − α ∈ N0, then the conclusions of Theorem 2.10 hold.
((iv)) Let `2 ∈ N0 be the smallest number larger than or equal to µ+ − α+.

If α > µ+ and if in Theorem 2.9 we replace the conditions on k by
conditions on k− `2 (in particular the condition k− `2 ≥ 1 must hold),
then the conclusions of Theorem 2.9 will hold with k replaced by k−`2.

Moreover the a–priori estimates of those theorems hold modified in the obvious
way.

Proof: When (n−1)/p is not an integer the result follows from Theorems 2.3,
2.4 and Lemma 2.8 using the arguments given in the proofs of Theorems 2.6 and
2.9. Here Lemma 2.8 is used with ` = k or ` = k− `1, and with k there replaced by
k + ˆ̀. Note, however, that for (n − 1)/p ∈ N a verbatim application of Theorems
2.3 and 2.4 would lead to a result worse by one as far as differentiability of u is
concerned. This can be improved by noting that, in the notation3 of Theorem 2.3
and under the hypotheses there, for α < α+ the inclusion (2.24) in Theorem 2.3
can be replaced by

∀ ε > 0 u− û ∈ Cα−ε
k+2+λ,k−ˆ̀+λ

(Mx1) . (2.55)

In eq. (2.55) the constant ˆ̀ is as defined in the statement of Theorem 2.11. This is
sufficient for our purposes and leads to the result here with ˆ̀ — as described in the
statement of Theorem 2.11. Similarly for (n− 1)/p ∈ N the constant δ in Theorem
2.4 can be chosen so that α+ + `0−1+δ is arbitrarily close to α. The result follows
then by the same arguments as indicated above. 2

3It should be stressed that k in eq. (2.55) does not coincide with k used in the statement of

Theorem 2.11.



CHAPTER 5

Nonlinear equations with polyhomogeneous
coefficients.

1. Polyhomogeneity of solutions of some fully nonlinear equations

In this chapter we shall show, under appropriate hypotheses, that solutions of a
class of (uniformly degenerating) fully nonlinear second order systems of equations
are polyhomogeneous near ∂M . Roughly speaking, to prove polyhomogeneity of
solutions we shall need

((i)) existence of a polyhomogeneous “approximate solution” φ0,
((ii)) existence of a “regularity interval” for the equation linearized at φ0,
((iii)) boundedness of the solution in some weighted Hölder class.

More precisely, consider a system of equations of the form

FA[y, φB , x∂iφB , x2∂i∂jφ
B ] = 0, A = 1, . . . , N, (1.1)

or, shortly,
F [φ] = 0.

We shall assume that both the fields φ and the equations (1.1) are geometric in
the sense of Chapter 4, we leave to the reader the easy task of formalizing this
notion along the lines of Chapter 4. We shall assume that we have an approximate
solution φ0 of equation (1.1) satisfying

φ0 ∈ Aphg ∩ C0(M̄) , (1.2)
F [φ0] ∈ Aphg ∩ Cα0

0 (M), α0 > 0 . (1.3)

The functions FA(y, zB , pBi , q
B
ij) will be assumed to be continuous with respect to

all the variables, smooth with respect to the variables z, p, q, and polyhomogeneous
w.r.t. x in the following sense: for all multiindices ν1, ν2, ν3 we have

[∂ν1z ∂
ν2
p ∂

ν3
q F ]

∣∣∣
φ=φ0

∈ Aphg ∩ C0(M̄) , (1.4)

and for all i and for all multiindices µ, ν1, ν2, ν3 it holds that

(x∂x)i∂µv ∂
ν1
z ∂

ν2
p ∂

ν3
q F ∈ C0(M̄ × RN(1+n+n2)). (1.5)

Remark: It should be clear from the proof below that it is sufficient to assume
(1.5) in a neighbourhood of the graph of φ0 over M̄x0 defined as

{(y, φ0, x∂φ0, x
2∂i∂jφ0), y ∈ M̄x0} ⊂ M̄x0 × RN(1+n+n2) .

Let F ′[χ] be the linearization of (1.1) at φ = χ:

F ′[χ]ψ =
∂FA

∂zB

∣∣∣
φ=χ

ψB + x
∂FA

∂pAi

∣∣∣
φ=χ

∂ψB

∂yi
+ x2 ∂F

A

∂qBij

∣∣∣
φ=χ

∂2ψB

∂yi∂yj
.

(1.6)

55
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Our hypotheses above are motivated by the harmonic map equation (under appro-
priate conditions; cf. [55, 56, 31] for some related results), and by the equation for
hypersurfaces with prescribed mean curvature (cf. [49, 7]). Indeed, for metrics on
the source space of the form g̃ij = x−2gij as considered in Chapter 3 or in Chapter
7 the harmonic map equation will be of the form considered here. Similarly, in a
space–time with a smooth or polyhomogeneous Scri, spacelike hypersurfaces inter-
secting Scri transversally will satisfy an equation of the form (1.1). Our theorem
below together with the remarks following it reduce the question of boundary reg-
ularity of solutions to those equations to an a–priori estimate in Cα1 (Mx0) spaces,
together with the proof of existence of the strong regularity interval. Note that for
the prescribed mean curvature equation the existence of a strong regularity interval
for appropriate approximate solutions required in Theorem 1.1 below follows from
the results in Section 2.

We have the following:

Theorem 1.1. Suppose that (1.2)–(1.5) hold, assume that F ′[φ0] is a geometric
elliptic operator of the form (2.1)–(2.4) considered in Section 2 and that F ′[φ0] has
a strong regularity interval (α−, α+) with

α+ > 0, α0 > α− . (1.7)

Let φ ∈ C loc
∞ (M) be a solution of (1.1) satisfying

φ− φ0 ∈ Cα∞(Mx0), α > max(0, α−) . (1.8)

Then
φ ∈ Aphg ∩ C0(M̄x0) .

Remarks:

((i)) In the case when eq. (1.1) is quasi–linear, i.e., linear in second deriva-
tives, then eq. (1.8) can be further weakened to φ − φ0 ∈ Cα1 (Mx0),
α > max(0, α−). Finally, if eq. (1.1) is linear both in second and first
derivatives of φ, then eq. (1.8) can be replaced by φ − φ0 ∈ Cα0 (Mx0),
α > max(0, α−); cf. Proposition 1.4 below.

((ii)) If (α−, α+) is a weak regularity interval, the result remains true if we
add the conditions α+ − α− > 1, α0 > α− + 1, α > max(0, α− + 1), cf.
the Remark following Lemma 1.3 below.

Proof: We shall prove that there exists a sequence si →i→∞ ∞ and a sequence
of functions φi ∈ Aphg ∩ C0(M̄) such that

φi − φ ∈ Csi
∞,∞(M) +Aphg ∩ Cα0

0 (M) (1.9)

from which the result follows. We shall proceed recursively; suppose thus that φi
has already been defined for some i ≥ 0: Then φ satisfies the equation

Li(φ− φi) ≡ F ′[φi](φ− φi) = Gi(φ− φi) + F (φi), (1.10)

where

Gi(ψ) := F [φi + ψ]− F ′[φi]ψ − F [φi] (1.11)

We shall need the following two Lemmata:

Lemma 1.2. Let φi − φ0 ∈ Aphg ∩ Cα0
0 (M). For k ∈ N∞0 , λ ∈ [0, 1], δ > 0 we

have:
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((i)) k ∈ N∞0 , λ ∈ [0, 1], ψ ∈ Cδ∞,k+λ(Mx0),

Gi(ψ) ∈ C2δ
∞,k+λ(Mx0) .

((ii)) ψ ∈ Aphg ∩ Cδ0(Mx0),

F (φ0 + ψ) ∈ Aphg ∩ Cmin(α0,δ)
0 (Mx0)

((iii)) ψ ∈ Aphg ∩ Cδ0(Mx0), χ ∈ Cγ∞,k+λ(Mx0),

(F ′[φ0 + ψ]− F ′[φ0])χ ∈ Cγ+min(α0,δ)
∞,k+λ (Mx0) .

Proof: Point (ii) follows from (1.4)–(1.5) using the Taylor expansion. Points
(i) and (iii) follow by a straightforward analysis of the remainder term (1.3) in the
Taylor expansion. 2

We can find s0 > max(0, α−) satisfying s0 ≤ min(α, α0) and s0 < α+. De-
creasing α0 if necessary, we may assume that s0 = α0. We have

Lemma 1.3. φ− φ0 ∈ Cs0∞,∞(Mx0).

Proof: Let u = φ− φ0 and consider

G[u] = F [φ0 + u]− F ′[φ0]u− F [φ0]. (1.12)

We will argue by induction. Fix an irrational θ ∈ (0, 1) so that 2s0 − θ ≥ s0.
It follows from our assumptions that u ∈ Cs0∞,0 which is the starting point of the
induction.

Now assume that u ∈ Cs0∞,kθ for some k ∈ N. By point (i) of Lemma 1.2,
G[u] ∈ C2s0

∞,kθ. For any f ∈ C2s0
∞,kθ and any multiindex γ we have

(x∂y)γf ∈ C2s0
∞,kθ ∩ C

2s0−1
∞,kθ+1.

Applying interpolation as in the proof of Lemma 2.2 gives with the above choice of
θ,

(x∂y)γf ∈ Cs00,(k+1)θ

but γ was arbitrary so we get f ∈ Cs0∞,(k+1)θ. Applying this result to G[u] and
noting that F [φ0] ∈ Cs0∞,∞ and F [φ0 + u] = 0 by assumption, we find

F ′[φ0]u ∈ Cs0∞,(k+1)θ.

By assumption (α−, α+) is a strong regularity interval for F ′[φ0] and s0 ∈ (α−, α+).
We can now apply Theorem 1.3 to conclude that u ∈ Cs0∞,(k+1)θ. It follows by
induction that u ∈ Cs0∞,∞. 2

Remark: In the case when (α−, α+) is only a weak regularity interval, the
above argument is valid only under restrictions on s0. Instead the appropriate
version of Lemma 1.3 is proved under the conditions outlined under point (ii) of
the remark following Theorem 1.1 by considering the identity

F ′[φ0]
∂φ

∂vA
=
[
F ′[φ0]− F ′[φ]

]
∂φ

∂vA︸ ︷︷ ︸+
∂F

∂vA
[φ0]− ∂F

∂vA
[φ]︸ ︷︷ ︸− ∂F

∂vA
[φ0] .

By eq. (1.3) and by point (iii) of Lemma 1.2 each group at the right hand side of this
equation is in Cs0∞ . From φ ∈ Cs0∞ we have ∂φ/∂vA ∈ Cs0−1

∞ , and since (α−, α+) is
a regularity interval and both s0 and s0− 1 are in (α−, α+) we find ∂φ/∂vA ∈ Cs0∞ ,
hence φ ∈ Cs0∞,1. The result follows by an inductive repetition of this argument; cf.
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the proof of Theorem 4.4 in Chapter 7 below for a more detailed exposition in a
similar context. 2

Returning to the proof of Theorem 1.1, Lemma 1.3 shows that (1.9) is satisfied
with i = 0. Consider again equation (1.10). By Lemma 1.2, point (i), we have
Gi(φ−φi) ∈ C2si

∞,∞(M). Now point (ii) of Lemma 1.2 gives F [φi] ∈ Aphg∩Cα0
0 (M),

thus
Li(φ− φi) ∈ C2si

∞,∞ +Aphg ∩ Cα0
0 (M).

This and point (iii) of Lemma 1.2 imply

L0(φ− φi) = (L0 − Li)(φ− φi) + Li(φ− φi) ∈ Csi+α0
∞,∞ + C2si

∞,∞ +Aphg ∩ Cα0
0 (M) .

A straightforward extension of Lemma 2.5 shows1 that we can find φ̂ ∈ Aphg ∩
Cα0

0 (M) such that

L0(φ− φi − φ̂) ∈ Csi+α0
∞,∞ + C2si

∞,∞ . (1.13)

Similarly, for si + α0 > µ+ it follows from a straightforward extension1 of Lemma
2.7 that φ̂ can moreover be chosen so that

φ− φi − φ̂ = o(xµ+) .

Here µ+ is the larger indicial exponent of L0, as defined at the beginning of Chapter
1. Lemma 2.8 gives

φ− φi ∈ Aphg ∩ Cα0 (M) + Csi+δ
∞,∞, δ = min(si, α0) ≥ s0 > 0 .

φi+1 is now defined as φi plus the sum of those terms in φ−φi which are polyhomo-
geneous and which decay slower than si+1 = si + δ. This completes the induction
step, and the result follows. 2

Now we specialize to consider the cases when F is quasi– or semi–linear. For
such equations we shall show that the hypothesis φ− φ0 ∈ Cα∞(Mx0) can be weak-
ened.

Definition 1.1. • We will say that the system F is quasi–linear if
F is of the form

F [φ] = x2aij∂i∂jφ+ c (1.14)

where aij ≡ aij [y, φ, x∂kφ] and similarly for c.
• We will say that the system F is semi–linear if F is of the form

F [φ] = x2aij [y, φ]∂i∂jφ+ xbi[y, φ]∂iφ+ c[y, φ] (1.15)

Proposition 1.4. Assume that F is of the form (1.14) with F satisfying (1.4)–
1.5). Further let φ0 be an approximate solution to F [φ] = 0 satisfying (1.2)–(1.3).
Assume that F ′[φ0] is an elliptic operator on M in the sense of Section 1, that

F [φ] = 0 ,

and that

φ− φ0 ∈ Cα1 (Mx0) ∩ C loc
2 (M), α > 0 . (1.16)

1The result needed here can actually be proved in a rather simpler way as compared to the

proof of Lemma 2.7: Indeed, all the functions appearing in the polyhomogeneous expansions are

smooth in the v variable, so that in the proof one does not need to use the extension operators of
Lemma 3.1.
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Then there exists x1 > 0 such that φ − φ0 ∈ Cs0∞(Mx1), where s0 = min(α0, α).
If moreover F is of the form (1.15), then (1.16) can be replaced by φ − φ0 ∈
Cα0 (Mx0) ∩ C loc

2 (M), α > 0.

Proof: Let Lφ be the operator defined by

Lφψ = x2aij(y, φ, x∂kφ)∂i∂jψ + xbi(y, φ, x∂kφ)∂iψ

and let
u = φ− φ0 .

From the regularity assumptions on F , a straightforward argument using Taylors
theorem shows the existence of some x1 > 0 so that Lφ ∈ OP 2

C0
0 (Mx1 )

is elliptic in
the sense of Chapter 1 and

Lφu ∈ Cs00 (Mx1) .
Now an application of interior estimates and scaling gives u ∈ Cs01+λ(Mx1/2) for
λ ∈ (0, 1). From the above we have that u ∈ Cs0k+λ(Mx1/2) with k = 1 and, since
by assumption u ∈ C loc

2 (M), it follows that u ∈ Cs0k+λ(Mx1) with k = 1.
We wish to show by induction that u ∈ Cs0k+λ(Mx1) for all k. We have shown

this to be true for k = 1. Assuming that u ∈ Cs0k+λ(Mx1) it follows from F [φ] = 0
and (1.14), using Taylors theorem, that

F ′[φ0]u ∈ Cs0k−1+λ(Mx1).

An application of the scaling estimate Lemma 1.1 gives u ∈ Cs0k+1+λ(Mx1). This
achieves the induction step and proves the Proposition. 2





CHAPTER 6

The vector constraint equation.

1. Introductory remarks

Let (M̄, g) be a compact Riemannian manifold with boundary ∂M , let x be
any defining function for ∂M , for x ∈M ≡ M̄ \ ∂M let

g̃ij = x−2 gij . (1.1)

As discussed in Chapter 2, to construct solutions of the vector constraint equation
one makes use of the conformal invariance of the system

Di P
ij = 0 , Dk

(
gij P

ij
)

= 0 .

There are at least two ways to proceed:

Method 1. Let Aij be a symmetric, traceless tensor field (gij Aij = 0), suppose
that β ∈ R, let the vector field Xi satisfy

Di

(
DiXj +DjXi − 2

n

(
DkX

k
)
gij
)

= −Di

(
xβ Aij

)
, (1.2)

where D is the Riemannian connection of gij . Then the tensor field

Bij ≡ DiXj +DjXi − 2
n

(
DkX

k
)
gij + xβ Aij

is symmetric, traceless and transverse for the metric gij (DjB
ij = 0). Moreover

the tensor field B̃ij ≡ x−(n+2)Bij is transverse for the metric g̃ij (D̃jB̃
ij = 0).

Method 2. Let Ãij be a symmetric, traceless tensor field (g̃ij Ãij = 0), suppose
that β ∈ R, let the vector field X̃i satisfy

D̃i

(
D̃iX̃j + D̃jX̃i − 2

n

(
D̃kX̃

k
)
g̃ij
)

= −D̃i

(
xβ Ãij

)
(1.3)

where D̃ is the Riemannian connection of g̃ij . Then the tensor field

B̃ij = D̃iX̃j + D̃jX̃i − 2
n

(
D̃kX̃

k
)
gij + xβ Ãij

is symmetric, traceless and transverse for the metric g̃ij (D̃jB̃
ij = 0). Moreover

the tensor field Bij ≡ x(n+2)B̃ij is transverse for the metric gij (DjB
ij = 0).

Because of the singular character (recall that x = 0 on ∂M), of the relationship
(1.1) between gij and g̃ij , the methods turn out to be quite different. Since the
operator on the right-hand-side of (1.2) is a regular elliptic operator on M (i.e.,
elliptic up–to–boundary in the standard sense), the first method turns out to be
more convenient for proving existence of solutions of the vector constraint which
are smoothly extendable across ∂M ; this is most easily achieved using (standard)
non–weighted Hölder spaces on the compactified manifold, as shown in Section 2.
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On the other hand the evolution problem is most directly formulated in terms of
Sobolev-type spaces, in the non-compactified picture, it is therefore natural to use
the second method to do that: this analysis is carried out in Section 3.

2. (Non–weighted) Hölder spaces on the compactified manifold

In this section we shall prove existence of solutions of the system of equation

∆L,gX = Y , (2.1)

(∆L,gX)i ≡ Dj L
ij(X) , (2.2)

Lij(X) ≡ 1
2

(DiXj +DjXi)− 1
n
DkX

k gij , (2.3)

under various hypotheses on the source term Y , where gij is a Riemannian metric on
a compact manifold M̄ with boundary ∂M ; by this we mean that (M̄\∂M, g

∣∣
M̄\∂M )

is a Riemannian manifold and in local coordinates {yi} near ∂M as described at
the beginnig of Chapter 3 the matrix gij ≡ g

(
∂
∂yi ,

∂
∂yj

)
is strictly positive definite

up to ∂M , thus:

∀ Xi ∈ Rn C−1
∑
i

(Xi)2 ≤ gijX
iXj ≤ C

∑
i

(Xi)2 (2.4)

for some constant C. Di always denotes the Riemannian connection of gij .

Definition 2.1. The metric gij will be said to be of class Mα
k+λ, α ≥ 0, if (2.4)

holds and if for 0 ≤ |γ| ≤ k we have ∂γy gij ∈ C
min(0,α−|γ|)
0+λ (M) (thus gij ∈ C loc

k+λ(M),
and in local coordinates near ∂M (cf. the beginning of Chapter 3) we have

|gij |+ |gij |+ (1 + xα−1)−1

∣∣∣∣ ∂∂yk gij
∣∣∣∣+ . . .+ (1 + xα−k)−1

∣∣∣∣ ∂

∂yi1
. . .

∂

∂yik
gij

∣∣∣∣ ≤ C ,
(2.5)

for some constant C, together with an appropriate weighted Hölder condition if
λ > 0).

Note that a metric g ∈ Ck+λ(M̄) is in Mα
k+λ for all α > 0.

Proposition 2.2. Let g be a metric of Mα
k+λ class on M , 2 < dimM , λ ∈ [0, 1],

α > 0, k ≥ 3, let X ∈ Cα̃1 (M) ∩W p;loc
3 (M, g, dµg), α̃ > 0, p ∈ [1,∞), satisfy

L(X) =
1
2

(DiXj +DjXi)− 1
n

(
DkX

k
)
gij = 0 . (2.6)

Then
X = 0 .

To prove Proposition 2.2 we shall need the following Lemmata:

Lemma 2.3. Let g be of class Mα
k , k ≥ 3, then for x ≤ x0 in local coordinates

we have ∣∣Γijk∣∣δ + x|R|g + x2|DR|g ≤ C(1 + xα−1) ,

for some constant C, where R =
(
Rijk`

)
is the Riemann tensor, DR =

(
DkR

i
jmn

)
,

| |h stands for the Riemannian norm of a tensor with respect to the metric h.

Proof: Simple computation. 2

The result that follows is well known (we use the conventionDkDjX
i−DjDkX

i =
Ri`kjX

`):
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Lemma 2.4. Let δX ≡ DiX
i, Xi ≡ gijX

j . Under the hypotheses of Proposi-
tion 2.2 we have X ∈ C loc

3 (M), and the following hold (n = dimM > 2):

DmDkDiXj = DmR
`
kijX` +R`kijDmX`

+
1
n
{DmDk(δX)gij +DmDi(δX)gjk −DmDj(δX)gik} ,(2.7)

DiDkδX =
n

n− 2

{
− 2R`(iDk)X

` +
R

n(n− 1)
δXgik

+X`D`

(
1

2(n− 1)
Rgik −Rik

)}
, (2.8)

where Rij = Rkikj is the Ricci tensor of gij , R = gijRij the Ricci scalar.

Proof: It is an easy exercise in distributional differentiation to show from (2.6)
and X ∈ W p,loc

3 (M, g, dµg) that the equations (2.7)–(2.8) hold in a distributional
sense, which together with X ∈ C loc

1 (M) implies that X ∈ C loc
3 (M), and shows

that (2.7)–(2.8) hold pointwise. 2

Lemma 2.5. Under the hypotheses of Proposition 2.2 for any σ > 0 there exists
a constant C(σ) such that

|X|g + x|DX|g + x2|DDX|g ≤ Cxσ , (2.9)

where DX = (DiXj), DDX = (DiDjXk).

Proof: Equations (2.7)–(2.8) and X ∈ Cα̃1 show that DDDX ∈ Cα̃−3
0 , which

easily (e.g.,by scaled interpolation) implies X ∈ Cα̃3 . Let

I = {σ ∈ R : ∃C such that (2.9) holds}
since X ∈ Cα̃3 , α̃ > 0, it follows that (−∞, α̃] ⊂ I, thus I 6= ∅. Let

σ̃ = lim sup I ,

suppose that σ̃ 6= ∞, set σ1 = σ̃ − 1
2 min(α, 1); by definition of σ̃ we have σ1 ∈ I,

thus

|X|g + x|DX|g + x2|DDX|g ≤ Cxσ1 . (2.10)

Decreasing σ1 slightly if necessary we may assume −σ1 6∈ N. Equations (2.7)–(2.8)
imply an equation of the form

∂xDDX = “ΓDDX +RDX +DRX”
= O(xσ1+min(1,α)−3) . (2.11)

Suppose first that σ1 + min(1, α) < 1; from

f(x1, v) = f(x2, v)−
∫ x2

x1

∂f

∂x
(s, v) ds (2.12)

one has, setting f = DDX, x1 = x, x2 = x0,

DDX = O(xσ1+min(1,α)−2) , (2.13)

similarly from

∂xDX = “ΓDX +DDX” (2.14)

and from (2.12)–(2.13) it follows

DX = O(xσ1+min(1,α)−1) . (2.15)
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Passing to the limit x1 → 0 in the equation

X(x, v) = X(x1, v) +
∫ x

x1

“(ΓX +DX)”(s, v) ds (2.16)

(the integral at the right-hand-side of (2.16) converges because σ1 + min(1, α) >
σ̃ > α̃ > 0), making use of X(0, v) = 0, one obtains

X = O(xσ1+min(1,α)) , (2.17)

which together with (2.13) and (2.15) contradicts the definition of σ̃, thus σ1 +
min(1, α) > 1; suppose that σ1 + min(1, α) < 2. (2.13) still holds so that (2.12)
with f = DX shows (cf. (2.14)) that the limit

Aij(v) = lim
x→0

DiXj(x, v)

exists, and we have

DiXj −Aij = O(xσ1+min(1,α)−1) , (2.18)

while (2.16) gives

Xj = O(x) . (2.19)

(2.13), (2.18) and (2.19) yield
∂X = O(1) ,

∂∂X = O(xε−1), ε = min(0, σ1 − 1) + min(1, α) > 0 . (2.20)

Let v0 ∈ ∂M ; (2.12) with f = gij together with g ∈ Mα
3 implies that fij ≡

limx→0 gij(x, v0) exists. Passing to the limit x→ 0 in (2.6) one has

Aij +Aji =
2
n
f `mA`m fij , (2.21)

where f `m ≡ (fij)−1 (cf. (2.4)). The interpolation inequality (cf. e.g. [44, Appendix
A]:

‖f‖C1(∂M) ≤ C‖f‖1/2C2(∂M)‖f‖
1/2
C0(∂M) (2.22)

applied to f(v) = Xi(x, v) together with (2.19) and (2.20) gives∣∣∣∣∂Xi

∂v

∣∣∣∣ (v, x) ≤ Cxε/2 , (2.23)

thus AAi = 0. Let e(i) = e(i)
j ∂j be an orthonormal basis at (0, v0) for fij , with

e(A) = e(A)
B ∂vB , e(1)⊥∂M , set A(i)(j) = Aij e

i
(i) e

j
(j); we have, for A = 2, . . . , n,

e1(A) = 0 =⇒ A(A)(j) ≡ ek(A) e
`
(j)Ak` = 0 =⇒ f ij Aij = A(1)(1) .

(2.21) rewritten in the orthonormal frame e(i),

A(i)(j) +A(j)(i) =
2
n
A(1)(1) δ(i)(j) ,

with (i)(j) = (1)(1), (1)(A) gives

Aij = 0 ,

thus (2.15) and (2.17) hold, contradicting again the definition of σ̃, thus σ1 +
min(1, α) > 2. Going through the whole argument once again one similarly shows
that the limit

Aijk = lim
x→0

DiDjXk(x, v0)
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exists, and AAjk = 0. Algebraic manipulations with the equations

Akij +Akji −
2
n
f `mA`mk fij = lim

x→0
Dk

(
DiXj +DjXi −

2
n
gk`DkX` gij

)
= 0

lead to
Aijk = 0 .

This implies that (2.13), (2.15) and (2.17) hold again, contradicting the definition
of σ̃, thus σ̃ = ∞, which had to be established. 2

Proof of Proposition 2.2: Let

f(x) = (|X|2g + x2|DX|2g + x4|DDX|2g) .
We have

∂f

∂x
=

2
x
〈X,xDxX〉+

2
x
x2|DX|2g +

2
x
〈xDX, x2DxDX〉+

4
x
x4|DDX|2g + F ,

where F is given by
F = 2〈x2DDX,x2DxDDX〉 .

Thus, using 2ab ≤ a2 + b2,

∂f

∂x
≤

4 +
∣∣ ∂
∂x

∣∣
g

x
f + F .

From Lemmata 2.3 and 2.4 it follows

|F | ≤ Cx2|DDX|(xmin(1,α)−1|X|+ xmin(1,α)−1x|DX|)

≤ Cxmin(1,α)

x
(x2|DDX| |X|+ x2|DDX|x|DX|)

≤ Cxmin(1,α)

x
f .

Therefore, for 0 ≤ x ≤ x0, we have

∂f

∂x
≤

4 +
∣∣ ∂
∂x

∣∣
g

+ C

x
f ≤ σf

x
,

for some constant σ, so that for 0 < x1 ≤ x ≤ x0 one has

ln
[
f(x)xσ1
f(x1)xσ

]
≤ 0 ,

which implies

f(x) ≤ f(x1)
xσ1

xσ .

Passing to the limit x1 → 0 one obtains from Lemma 2.5

f(x) ≡ 0 ,

thus X vanishes in a neighbourhood of ∂M , which by well known results on con-
formal Killing vector fields (cf. Lemma 2.4) implies X ≡ 0. 2

Proposition 2.6. Let g be a C`+λ(M̄) ∩Mα
3 metric, ` ≥ 2, α > 0.

((i)) For p ∈ [2,∞) if k = 0 and p ∈ (1,∞) if 1 ≤ k ≤ ` − 2 there exists a

constant C such that for all X ∈
◦
W

p
1∩W

p
k+2(M, g, dµg) we have

‖X‖Wp
k+2(M,g,dµg) ≤ C‖∆L,gX‖Wp

k
(M,g,dµg) . (2.24)
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((ii)) For 0 ≤ k ≤ `− 2, λ ∈ (0, 1), there exists a constant C such that for all
X ∈ Ck+2+λ(M̄) satisfying X(p) = 0 for p ∈ ∂M ,

‖X‖Ck+2+λ(M̄) ≤ C‖∆L,gX‖Ck+λ(M̄) . (2.25)

Proof: To prove (2.24), recall that since ∆L,g is elliptic we have the estimate
[2, Theorem 10.5]

‖X‖Wp
k+2

≤ C
(
‖∆L,gX‖Wp

k
+ ‖X‖L1

)
. (2.26)

Suppose that (2.24) does not hold; thus for i ∈ N there exists Xi such that ‖Xi‖L1 =
1 and

‖∆L,gXi‖Wp
k
≤ 1
i
‖X‖Wp

k+2
.

(2.26) implies

‖Xi‖Wp
k+2

≤ C

i
‖Xi‖Wp

k+2
+ C =⇒ ‖Xi‖Wp

k+2
≤ 2C for i ≥ 2C ,

therefore
‖∆L,gXi‖Wp

k+2
≤ 2C

i
.

By the Rellich-Kondrakov theorem a subsequence, still denoted by Xi, can be
chosen converging strongly in W 2

1 to X∞ ∈W 2
1 , and we have

∀ Y ∈
◦
W

2
1(M, g, dµg)

∫
M

(DiXj
∞ +DjXi

∞ − 2
n
DkX

k
∞g

ij)DjYi dµg = 0 .
(2.27)

Elliptic regularity (cf. e.g. [39]) and g ∈ C2(M̄) give X∞ ∈ C1+α̃(M̄) for some α̃ ∈
(0, 1), while g ∈Mα

3 implies that X∞ ∈W p,loc
3 (M, g, dµg) for all p ∈ (1,∞). Setting

Y = X∞ in (2.27) it follows that X∞ is a conformal Killing vector. Proposition 2.2
implies X∞ = 0, which contradicts ‖X∞‖L1 = 1, and proves (2.24).

(2.25) is proved in a similar (and simpler) way, using

‖X‖Ck+2+λ(M̄) ≤ C
(
‖∆L,gX‖Ck+λ(M̄) + ‖X‖L1(M,dµg)

)
(cf. [2, Theorem 9.2]) and the Arzela-Arcoli theorem. 2

Theorem 2.7. Let g be a C`+λ(M̄) ∩Mα
3 metric on a compact manifold M̄

(with boundary), ` ≥ 2, λ ∈ [0, 1], α > 0.
((i)) Suppose that λ ∈ (0, 1). For 0 ≤ k ≤ `− 2 the map

∆L,g : {X ∈ Ck+2+λ(M̄) : X(p) = 0 for p ∈ ∂M} → Ck+λ(M̄)
(2.28)

is an isomorphism.
((ii)) For p ∈ [2,∞), k = 0, or p ∈ (1,∞), 1 ≤ k ≤ `− 2 the map

∆L,g :
◦
W

p
1∩W

p
k+2(M, g, dµg) →W p

k (M, g, dµg) (2.29)

is an isomorphism.

Remark: If ` ≥ 3 then g ∈ C`(M̄) implies g ∈Mα
3 for all α > 0, cf. Definition

2.1.
Proof: (2.24) with p = 2, k = 0, shows that the problem

∆L,gX = Y , Y ∈ L2, X ∈
◦
W

2
1 (2.30)
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satisfies the coerciveness condition, existence of a weak solution follows from the
Lax–Milgram theorem [40, Theorem 5.8], regularity follows from e.g. [39], unique-
ness of solutions follows from (2.24). 2

Theorem 2.8. Let M̄ be a compact manifold (with boundary), suppose that
g is a metric on M ≡ M̄ \ ∂M̄ which can be C∞ extended across ∂M , let x be any
smooth defining function for ∂M . Consider the equation

∆L,gX = xα Y , Y ∈ C∞(M̄) . (2.31)

((i)) For α ∈ N0 and for any X0 ∈ C∞(M̄) there exists a solution of (2.31)
of the form

X = X0 +X1, X1 ∈ C∞(M̄) , X1 = O(x) . (2.32)

X is uniquely determined by Y and by ∂M 3 p → X0(p), in the class
of W 2

1 (M, g, dµg) solutions of (2.31).
((ii)) For α 6∈ Z there exist Xα+2, X0 ∈ C∞(M̄) such that the vector field X

given by

X = xα+2Xα+2 +X0 (2.33)

is a solution of (2.31). X is determined by Y , in the class of solutions
having the described properties, up to the addition of a C∞(M̄) solution
of the homogeneous equation (cf. point 1).

((iii)) For −α ∈ N there exist Xα+2, X0, Xlog ∈ C∞(M̄) such that the vector
field X given by

X = xα+2Xα+2 +X0 + log xXlog (2.34)

is a solution of (2.31). If α = −1 then there exists Xlog,1 ∈ C∞(M̄) such
that Xlog = xXlog,1. X is determined by Y , in the class of solutions
having the described properties, up to the addition of a C∞(M̄) solution
of the homogeneous equation (cf. point 1).

Remarks:

((i)) In (2.33) one can replace Xα+2 by Xα+2 + X̂α+2, with X̂α+2 ∈ C∞∞ (M)
without changing the form of (2.33), thus Xα+2 is not unique. A similar
remark applies to (2.34).

((ii)) For α + 2 > 1/2, X in (2.33) is unique in the class of solutions which
are in C

1/2+ε
2 , ε > 0, as follows from Proposition 2.2.

Proof: Point 1 folows immediately from Theorem 2.7. To prove the remaining
claims, let

X̃α+2 = Zα+2 + Vα+2 , Zα+2 ⊥ Dx , Vα+2 ∼ Dx .

A straightforward calculation gives

2∆L,g (xα+2X̃α+2) = (α+ 1)(α+ 2)xα |Dx|2g
{
Zα+2 +

2(n− 1)
n

Vα+2

}
+Wα+2 ,

(2.35)

Wα+2 = xα+1W ′
α+2 ,
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with W ′
α+2 ∈ C∞(M̄) if Zα+2, Vα+2 ∈ C∞(M̄). For α 6= −2,−1 we can choose

Zα+2 and Vα+2 ∈ C∞(M̄) so that

(α+ 1)(α+ 2) lim
x→0

{(
Zα+2 +

2(n− 1)
n

Vα+2

)
|Dx|2g

}
= lim
x→0

Y ,
(2.36)

and if we set

Y1 =
1
x

{
Y − (α+ 1)(α+ 2) |Dx|2g

(
Zα+2 +

2(n− 1)
n

Vα+2

)}
−W ′

α+2 ∈ C∞(M̄)

X̂1 = X − xα+2X̃α+2 ,

then X will be a solution of (2.31) if X̂1 satisfies

2∆L,g X̂1 = xα+1 Y1 . (2.37)

Suppose first that−α 6∈ N0; continuing as above we can find a sequence {X̃α+2+i}∞i=0

of vector fields X̃α+2+i ∈ C∞(M̄) such that

2∆L,g

(
N∑
i=0

xα+2+i X̃α+2+i

)
= xα+N YN , (2.38)

for some YN ∈ C∞(M̄). By Borel’s Lemma 1.2 there exists a smooth vector field
Xα+2 such that

Xα+2 ∼
∞∑
i=0

xi X̃α+2+i ,

and by (2.38) we have

2∆L,g (xα+2Xα+2)− xα Y ∈ C∞∞ (M) ⊂ C∞(M̄) .

By Theorem 2.7 there exists a vector field X1 ∈ C∞(M̄), X1(p) = 0 for p ∈ ∂M ,
such that

2∆L,gX1 = xα Y −∆L,g (xα+2Xα+2) .
Setting X = xα+2Xα+2 +X1 one obtains the required solution.

For −α ∈ N after a finite number of steps in the procedure leading from (2.31)
to (2.37) one obtains, for some Y−2, X̃i ∈ C∞(M̄),

2∆L,g

(
X −

−1∑
i=α+2

xi X̃i

)
= x−2 Y−2 , (2.39)

which can be solved to leading order by setting

X̃log = (Zlog + Vlog) Zlog, Vlog ∈ C∞(M̄) , Zlog ⊥ Dx , Vlog ∼ Dx ,

lim
x→0

{(
Zlog +

2(n− 1)
n

Vlog

)
|Dx|2g

}
= − lim

x→0
Y−2 ,

and we obtain

2∆L,g

(
X −

−1∑
i=α+2

xi X̃i − log x X̃log

)
= x−1 Y−1 + log xYlog

with some Y−1, Ylog ∈ C∞(M̄). For i ∈ N consider

X̃log,i = (Zlog,i + Vlog,i) , Zlog,i, Vlog,i ∈ C∞(M̄) , Zlog,i ⊥ Dx , Vlog,i ∼ Dx .
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We have

2∆L,g (X̃log,ix
i log x) = xi−2{i(i−1) log x+2i−1} |Dx|2g

{
Zlog,i +

2(n− 1)
n

Vlog,i

}
+xi−1(Wlog,i log x+Wi) ,

with Wi,Wlog,i ∈ C∞(M̄), and proceeding as before one shows that there exists
Xlog ∈ C∞(M̄), with Xlog ∼

∑∞
i=0 x

iX̃log,i such that

∆L,g (Xlog log x)− x−1 Y−1 − log xYlog ∈ C∞(M̄)

(note that if α = −1 then Xlog = xXlog,1, for some Xlog,1 ∈ C∞(M̄)), and the
result follows by point 1. Uniqueness, up to a smooth solution of the homogeneous
equation, follows by construction. 2

Theorem 2.8 shows that a natural space in which solutions of equation (2.31)
“live” is the space of polyhomogeneous vector fields. This leads us to introduce the
following:

Definition 2.9. A metric g on M will be said polyhomogeneous, and we shall
write g ∈ Mphg, if g is strictly positive definite up to ∂M , in the sense of (2.4),
and if in local coordinates near ∂M as described in Chapter 3 the components gij
of the metric tensor are polyhomogeneous functions. We thus have (cf. Chapter 3)

gij(x, v) ∼
I∑

m=0

∞∑
n=0

Nmn∑
k=0

gijmnk(v)xsm+n lnk x ,

for some functions gijmnk(v) ∈ C∞(∂M), and some sequence {(si, {Nij}∞j=0)}Ii=0,
with si ∈ R, Nij ∈ N0, I ∈ N∞0 , si > sj for i > j.

It should be remarked that (2.4) implies that s0 = 0,
∑
ij (gij000(v))2 > 0,

and that N00 = 0. A metric g ∈ C∞(M̄) is necessarily polyhomogeneous, and we
also have Mphg ⊂ Mα

∞ ≡ ∩kMα
k (cf. Definition 2.1), for some α > 0 (we have e.g.

α = s1 if s1 < 1 and N10 = 0, etc.).
The proof of the following result is a straightforward repetition of the proof of

Theorem 2.8, the details are left to the reader:

Theorem 2.10. Let g be a polyhomogeneous metric on a compact manifold
M̄ with boundary, which can be C2 extended across ∂M , consider the equation

∆L,gX = Y , Y ∈ Aphg . (2.40)

((i)) For any Y = o(x−2) and X0 ∈ C∞(M̄) there exists a solution of (2.40)
of the form

X = X0 +X∗, X∗ ∈ Aphg , X∗(p) = 0 for p ∈ ∂M . (2.41)

X is uniquely determined by Y and by ∂M 3 p → X0(p), in the class
of polyhomogeneous solutions of (2.40).

((ii)) There exists a solution X ∈ Aphg of (2.40). Any two polyhomogeneous
solutions of (2.40) differ by a solution of the homogeneous equation, as
described in point (i) above.
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3. Weighted Sobolev spaces

In this section we shall establish existence of solutions of the equation

∆L̃,g̃X = Y , (3.1)

with g̃ij = x−2 gij , gij — Riemannian metric on a compact manifold M with
boundary ∂M , x — a defining function for ∂M , under various conditions on Y .
Let us set

L̃(X)ij =
1
2

(D̃iXj + D̃jXi)− 1
n
D̃kX

k g̃ij , (3.2)

where D̃i is the Riemannian connection of the metric g̃ij , let L̃∗ be the formal L2

adjoint of L̃, we have

∆L̃,g̃X
j = D̃i L̃(X)ij = −L̃∗ L̃(X)j . (3.3)

The operator ∆L̃,g̃ is of the form considered in Chapter 4, in fact we have

∆L̃,g̃X
j = xn+2Di(x−n Lij(X))

= x2 ∆L,gX
j − nxDixL

ij(X) ,

with ∆L,g, Lij — defined in (2.1)–(2.3). In local coordinates as described at the
beginning of Chapter 3 this can be written as

∆L̃,g̃X = |Dx|2g
[(
x2 ∂2

x − nx∂x
)
φ+ L̃φ

]
, (3.4)

where φ1 =
(
1− 1

n

)
X1, φA = XA/2, with L̃ of the form (2.3), and the theory of

Chapter 4 will apply if we can show the existence of some regularity interval, either
in weighted Hölder or in weighted Sobolev spaces. Let us note that the indicial
roots for ∆L̃,g̃ are

(µ−, µ+) = (0, n+ 1) . (3.5)

In this section we shall make appeal to some results of [3], let us shortly discuss
the notational correspondence between [3] and this paper. We have g̃ here ↔ g in
[3], x here ↔ ρ in [3], g here ↔ h in [3], thus g̃ = x−2g here while g = ρ−2h in [3].
Let X be an s-covariant r-contravariant tensor field, we have

X ∈ Cαk+λ here ↔ X ∈ Ck,λ−α+s−r in [3]

X ∈ Hα
k (M, g̃) here ↔ X ∈ H2,k

−α(M, g) in [3]

↔ X ∈Wα−s+r;2
k (M, g) as defined in Chapter 3 .

We will also use spaces

Hα,β
k (M, g̃) ↔Wα−s+r,β;2

k (M, g) as defined in Chapter 3. (3.6)

Let us start with a McKean–type inequality (cf. [61]):

Proposition 3.1. Let g be a Mσ
1 , σ > 0, metric on M and suppose that f is a

C1 tensor field with suppf ⊂Mε, with some ε > 0. For 1 ≤ p and α > −(n− 1)/p
there exists ε0 > 0 such that for 0 < ε ≤ ε0 we have{[

n− 1
p

]
+ α− o(1)

}
‖ |Dx|g |f |g̃‖xαLp(Mε,dµg̃) ≤ ‖ |D̃f |g̃‖xαLp(Mε,dµg̃) ,

(3.7)

with o(1) → 0 as ε→ 0.
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Proof: Suppose first that f is a function. The identity

0 =
∫
Mε

D̃i

(
|f |px−pα−1|Dx|p−2

g D̃ix
)
dµg̃

written out in detail gives, after some rearrangements,

(
n− 1
p

+ α− o(1))
∫
Mε

|Dx|pg|f |px−pαdµg̃

≤
∫
Mε
|Dx|p−1

g |D̃f |g̃|f |p−1x−pαdµg̃ .(3.8)

From Hölder’s inequality we obtain∫
Mε

|Dx|p−1
g |D̃f |g̃|f |p−1x−pαdµg̃

≤
(∫

Mε

|D̃f |pg̃x
−pαdµg̃

)1/p(∫
Mε

|Dx|pg|f |px−pαdµg̃
)(p−1)/p

which together with (3.8) gives (3.7).

If f is a tensor, the result follows by applying (3.7) to the function φ(x)
(
δ + |f |2g̃

) 1
2

and passing to the limit δ → 0, where δ is a positive constant and φ is any function
satisfying φ ∈ C

◦

∞(Mε), φ|suppf = 1. 2

We now improve this for p = 2 and for r–forms (we shall need the result
for vectors, which are of course naturally identified with 1–forms). The following
computational Lemma is useful:

Lemma 3.2. Let g be a Mσ
2+λ metric on M with 0 < σ ≤ 1 and let H̃log(x)

denote the Hessian of log(x) with respect to the metric g̃, where x is the defining
function of ∂M as above and let s ∈ R. Then the eigenvalues of H̃log(x) satisfy

λi(H̃log(xs)) ≥ −s|Dx|2g +O(xσ) .

Moreover, the Laplacian ∆g̃x
s, with ∆g̃ = D̃iD̃

i, satisfies

∆g̃x
s = −xs

[
s(n− 1− s)|Dx|2g +O(xσ)

]
.

Further, if we let d∗̃ denote the exterior co–derivative w.r.t. g̃, then

d∗̃(D̃x/|D̃x|g̃) = −D̃i(D̃ix/|D̃x|g̃) = (n− 1)|Dx|g +O(xσ) .

In regular coordinates near ∂M the Riemann tensor R̃ijkl of g̃ satisfies

R̃ijkl = x−4[|Dx|2g(gijgkl − gilgjk) +O(xσ)] ,

and the Ricci tensor R̃ij of g̃ satisfies

R̃ij = x−2[−(n− 1)|Dx|2ggij +O(xσ)] .

The following result was originally proved for manifolds close to hyperbolic
space by Donnelly and Xavier [29]. The following argument, due to Lee [52], gives
the result in the general conformally compact case, cf. also [3] for a proof based on
the argument of [29]. We give the proof here for completeness; by definition the
norm || · ||Hk(Mε,g̃) here is the norm in H0,0

k (Mε, g̃), as defined in Section 1.3, page
19.



72 6. THE VECTOR CONSTRAINT EQUATION.

Lemma 3.3. Let ξ be a C∞ r–form with supp|ξ|g̃ ⊂Mε, let g be a Mσ
1 ∩ C loc

2

metric on M , σ > 0. Then, for r ≤ (n− 1)/2 or r ≥ (n+ 1)/2,[
(n− 1− 2r)2

4
+ o(1)

]
‖|Dx|gξ‖2H0(Mε,g̃)

≤ ‖dξ‖2H0(Mε,g̃)
+ 2‖d∗̃ξ‖2H0(Mε,g̃)

(3.9)

Proof: To avoid a proliferation of tilde’s, we momentarily suspend the con-
vention that geometric quantities refering to the metric g̃ are decorated with tildes.
Thus, until specified otherwise all geometric quantities refer to the g̃ metric. Let
{ej} denote any local orthonormal frame for TM and {ej} the corresponding dual
coframe. Let D denote the covariant derivative of the metric acting on tensors,
with Dj ≡ Dej . Recall the identities

dξ =
∑

ej ∧Djξ ,

d∗ξ =
∑

−ej ∨Djξ ,

d(e−uξ) = e−u(dξ − du ∧ ξ) ,
d∗(euξ) = eu(d∗ξ − du ∨ ξ) ,

d(du ∨ ξ) = −du ∨ dξ +Huξ +DDuξ ,

|du|2|ξ|2 − (∆Hu)|ξ|2 = −e−u∆H(eu)|ξ|2 .
Here ∨ is the contraction operator1, Hu = Ddu denotes the Hessian of u and Huξ
denotes the induced operator on Λr,

Huξ = Didu ∧ (ei ∨ ξ) .
In the calculation below, ∆H = dd∗ + d∗d.∫

M

|eud(e−uξ)|2 + |e−ud∗(euξ)|2

=
∫
M

|dξ − du ∧ ξ|2 + |d∗ξ − du ∨ ξ|2

=
∫
M

|dξ|2 − 2〈dξ, du ∧ ξ〉+ |du ∨ ξ|2 + |d∗ξ|2 − 2〈d∗ξ, du ∨ ξ〉+ |du ∧ ξ|2

=
∫
M

〈ξ,∆Hξ〉 − 2〈du ∨ dξ, ξ〉+ 〈du ∨ (du ∧ ξ), ξ〉 − 2〈ξ, d(du ∨ ξ)〉+ 〈du ∧ (du ∨ ξ), ξ〉

=
∫
M

〈ξ,∆Hξ〉+ |du|2|ξ|2 − 2〈ξ,Huξ〉 − 2〈ξ,Dgraduξ〉

=
∫
M

〈ξ,∆Hξ〉+ |du|2|ξ|2 − 2〈ξ,Huξ〉 − (∆Hu)|ξ|2

=
∫
M

〈ξ,∆Hξ〉 − e−u∆H(eu)|ξ|2 − 2〈ξ,Huξ〉

We can state this in the form∫
M

〈ξ,∆Hξ〉 =
∫
M

φ−1∆Hφ|ξ|2 + 2〈ξ,Hlog φξ〉+ |φd(φ−1ξ)|2 + |φ−1d∗(φξ)|2

≥
∫
M

φ−1∆Hφ|ξ|2 + 2〈ξ,Hlog φξ〉 .

1If α is a q–form and β a p + q–form, in local coordinates we have (α ∨ β)i1...ip =

αj1...jq βj1...jqi1...ip , where the indices on αj1...jq have been raised with the appropriate metric.
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Let us now return to our convention, that quantities referring to the g̃ metric
are decorated with tildes. Choosing φ = xs with s 6= 0, n − 1, a straightforward
computation gives (recall that ∆H = −∆g̃ when acting on functions)

φ−1∆g̃φ = −s(n− 1− s)|Dx|2g + o(1) ,

H̃log φ ≡ D̃iD̃j log φ = sx−2|Dx|2g(ninj − gij + o(1)) ,

with ni = Dix/|Dx|g. Note that if A ∈ End(TM) is symmetric with eigenvalues
bounded from below by λ then 〈Aξ, ξ〉 ≥ λr|ξ|2 when A is considered in End(Λr).
This gives the inequality

[s(n− 1− s− 2r) + o(1)]
∫
M

|ξ|2g̃|Dx|2gdµg̃ ≤
∫
M

(|dξ|2g̃ + |d∗̃ξ|2g̃)dµg̃ .
(3.10)

Here s is a free parameter and we maximize the left hand side of (3.10) w.r.t. s.
This gives s = (n− 1− 2r)/2 which inserted into (3.10) gives the result. 2

Remark: Note that in the case r = (n ± 1)/2 the above result does not give
any information better that λr ≥ 0 and this is in fact sharp, as can be shown for
the case of constant sectional curvature.

Proposition 3.4. Let ξ be a C∞ r–form with supp|ξ|g̃ ⊂ Mε, let g be a Mσ
2

metric on M with σ > 0. Then[
(n− 1)2

4
+ r′ − o(1)

]
‖ |Dx|g ξ‖2H0(Mε,g̃)

≤ ‖ D̃ξ‖2H0(Mε,g̃)
.

(3.11)

where r′ = r if r < n/2 and r′ = n− r if r > n/2.

Proof: This is immediate from the Weitzenbock formula (cf., e.g., [38]),

< (dd∗̃ + d∗̃d)ξ, ξ >g̃= |D̃ξ|2g̃+ < R̃rξ, ξ >g̃ + pure divergence,
(3.12)

and the asymptotic behaviour of the Riemann tensor, cf. Lemma 3.2. cf. [11] or
[38] for the precise form of R̃r. 2

Proposition 3.5. Let g ∈Mσ
2 , σ > 0, and suppose that

|α| < n+ 1
2

√
n

2(n− 1)
.

For every β ∈ R there exists ε > 0 and a constant C such that for everyX ∈ C
◦

2(Mε)
we have

‖ |X|g̃‖xα(1+| ln x|)β L2(Mε,dµg̃) ≤ C‖ |∆L̃,g̃X|g̃‖xα(1+| ln x|)β L2(Mε,dµg̃) .
(3.13)

Remark: We believe that the above bound on α is not sharp, and we expect
the inequality to hold for |α| < (n+ 1)/2.

To prove Proposition 3.5 we need still another Lemma:



74 6. THE VECTOR CONSTRAINT EQUATION.

Lemma 3.6. Let φ ∈ C2(M), X ∈ C
◦

2(Mx0), set Y = φX. Under the hypothe-
ses of Proposition 3.5 we have

∗ ≡ −
∫
Mx0

Yi ∆L̃,g̃ Y
i dµg̃ ≤

(n− 1)
n

∫
Mx0

|D̃ φ|2g̃ |X|2g̃ dµg̃

−
∫
Mx0

φ2Xi ∆L̃,g̃X
i dµg̃ . (3.14)

Proof: From the Ricci identity we have

2∆L̃,g̃ Y
i = ∆g̃ Y

i + R̃ij Y
j +

n− 2
n

D̃i δ̃Y , (3.15)

where ∆g̃ = D̃i D̃
i is the standard Laplacian, R̃ij is the Ricci tensor of g̃ij , and

δ̃ Y = D̃i Y
i. This implies

∗ =
1
2

(A+B + C) , (3.16)

A =
∫
|D̃ Y |2g̃ , (3.17)

B = −
∫
R̃ij Y

i Y j , (3.18)

C =
n− 2
n

∫ (
D̃i Y

i
)2

. (3.19)

Setting Y = φX the identity

0 =
∫
D̃i
(
φ2Xj D̃iXj

)
written out in detail and inserted in A gives

A =
∫
|D̃ φ|2g̃ |X|2g̃ −

∫
φ2Xj ∆g̃X

j . (3.20)

Similarly the identity

0 =
∫
D̃i

(
φ2Xi D̃kX

k
)

yields

C =
n− 2
n

∫ [(
Xi D̃i φ

)2

− φ2Xi D̃i D̃kX
k

]
. (3.21)

Substituting (3.20)–(3.21) in (3.16) one gets, using (3.15),

∗ =
∫ {

1
2
|D̃ φ|2g̃|X|2g̃ +

n− 2
2n

(
Xi D̃i φ

)2

− φ2Xi ∆L,g̃X
i

}
,

which implies (3.14). 2

Proof of Proposition 3.5. Consider again the equation (3.16). We have

−R̃ij Y i Y j = (n− 1) |Dx|2g (1 + o(1))φ2 |X|2g̃ ,

so that using neglecting C in (3.16) and using (3.11) to estimate A one has[
(n+ 1)2

8
− o(1)

] ∫
|Dx|2g φ2 |X|2g̃ dµg̃ ≤ ∗ ,
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which together with (3.14) yields∫ {(
(n+ 1)2

8
− o(1)

)
φ2 |Dx|2g −

(n− 1)
n

|D̃ φ|2g̃
}
|X|2g̃ ≤ −

∫
φ2Xi ∆L̃,g̃X

i .

Let ε < 1, set φ = x−α(1 + | lnx|)−β , for α 6= 0 we have

|D̃ φ|g̃ = |α|x−α(1 + | lnx|)−β) |Dx|g
(

1 +O

(
1

| ln ε|

))
,

while if α = 0
|D̃ φ|g̃ = β | lnx|β−1 |Dx|g ,

so that in either case
|D̃ φ|g̃ = φ |Dx|g(|α|+ o(1)) ,

thus{
(n+ 1)2

8
− (n− 1)

n
α2 − o(1)

}
‖φ|Dx|g |X|g̃‖2L2 ≤ −

∫
φ2Xi ∆L,g̃X

i dµg̃

≤ ‖φ|X|g̃‖L2 ‖φ|∆L,g̃X|g̃‖L2

which implies (3.13). 2

Proposition 3.5 shows that Proposition 2.6 of [3] applies, and since ∆L̃,g̃ is
formally self-adjoint, Corollary 2.7 of [3] shows:

Proposition 3.7. Let M be a manifold with boundary with M̄ — compact.
Suppose that g ∈Mσ

k+2+λ, and k ≥ 0. For

|α| < n+ 1
2

√
n

2(n− 1)
, β ∈ R ,

the operator
∆L̃,g̃ : Hα,β

k+2(M, g̃) → Hα,β
k (M, g̃)

is Fredholm.

Remark: The spaces Hα,β
k (M, g̃) are defined in (3.6).

Theorem 3.8. Let M be a manifold with boundary with M̄ — compact. Let
g ∈Mσ

k+2+λ, k ≥ 1, λ ∈ [0, 1), σ > 0, k+ λ > 1 (cf. (2.5)) be a Riemannian metric
on M , let g̃ = x−2 g where x is a defining function for ∂M . For

|α| < n+ 1
2

√
n

2(n− 1)
, β ∈ R , 0 ≤ ` ≤ k ,

the maps

∆L̃,g̃ : Hα,β
`+2(M, g̃) → Hα,β

` (M, g̃) , (3.22)

∆L̃,g̃ : H
◦
α,β
1 ∩Hα,β

`+2(Mx0 , g̃) → Hα,β
` (Mx0 , g̃) ,

are isomorphisms.

Remarks:

((i)) As noted at the beginning of this section, Hα,β
m (M, g̃) = Wα+1,β;2

m (M, g)
for vector fields.

((ii)) In the physically interesting case n = 3 we get α ∈
(
−
√

3,
√

3
)
. In

local coordinates near ∂M this corresponds, roughly speaking, to vector
fields the components of which behave as xβ , β ∈ (2−

√
3, 2 +

√
3).
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Proof: By Proposition 3.7 ∆L̃,g̃ is Fredholm, and formal self-adjointness of ∆L̃,g̃

together with duality arguments imply (cf. e.g. [10, 3]) that it is sufficient to show
that the kernel of ∆L̃,g̃ on Hα,β

2 (M, g̃) is zero for α’s in the desired interval. Let
thus

∆L̃,g̃X = 0 , X ∈ Hα,β
2 (M, g̃) .

The proof of Proposition 3.10 of [3] shows that we have X ∈ Hα′,β
2 (M, g̃) for any

α′ ∈ (−ω+, ω+) and β in R, where ω+ = n+1
2

√
n

2(n−1) . In particular we have

X ∈ H0,0
2 (M, g̃), the standard H2 Sobolev space on M equipped with the metric g̃.

For all Y ∈ H0,0
2 (M, g̃) which are compactly supported we have the integration by

parts identity ∫
M

Yi ∆L̃,g̃ Y
i =

∫
M

|L̃(Y )|2g̃ dµg̃ , (3.23)

where L̃ has been defined in (3.2), and a standard density argument shows that
(3.23) holds for all (not necessarily compactly supported) Y ∈ H0,0

2 (M, g̃). It
follows that

0 =
∫
M

Xi ∆L̃,g̃X
i =

∫
M

|L̃(X)|2g̃ dµg̃ , (3.24)

and we conclude that

D̃iXj + D̃j Xi −
2
n
D̃kX

k g̃ij = 0 . (3.25)

Elliptic regularity implies X ∈ Hα,β
k+2(M, g̃), and from Proposition 3.10 of [3] it

follows that X ∈ C1+α′

0+σ , for any

|α′| ≤ n+ 1
2

√
n

2(n− 1)
, (3.26)

and for some σ > 0. If λ > 0 the scaling estimates (1.22) imply X ∈ C1+α′

k+min(λ,σ),

while if λ = 0 then by hypothesis k > 1 and X ∈ C1+α′

k−1+σ, thus in either case
X ∈ C1+α′

1 . Conformal invariance of (3.25) implies that (2.6) holds as well, and
the vanishing of X follows by Proposition 2.2. 2

The two Theorems that follow can be proved by arguments similar to those
used in the proof of Theorem 2.8, using Theorem 3.8 (cf. also [6] or Section 2.2
here), the details will be omitted. Let us start with an equivalent of Theorem 2.8:

Theorem 3.9. Let M̄ be a compact manifold (with boundary), suppose that
g is a metric on M ≡ M̄ \ ∂M̄ which can be C∞ extended across ∂M , let x be any
smooth defining function for ∂M . Consider the equation

∆L̃,g̃X = xα Y , Y ∈ C∞(M̄) . (3.27)

((i)) For any α and Y there exists a solution of (3.27) of the form

X = xαXα + log xX0,1 +X0 + xn+1 log2 xXn+1,2 ,

Xα, X0,1, X0, Xn+1,2 ∈ C∞(M̄) .
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((ii)) If moreover −α 6∈ N0 or if X0,1|∂M = 0, then there exists a solution of
(3.27) of the form

X = xαXα +X0 + xn+1 log xXn+1,1 ,

Xα, X0, Xn+1,1 ∈ C∞(M̄) .
If Xn+1,1|∂M = 0, then Xn+1,1 ≡ 0.

((iii)) Any solution X ∈ W loc
1 of the homogeneous equation satisfying either

1) X ∈ Hα
0 (M, g̃) with α > −n+1

2

√
n

2(n−1) , or 2) X = O(xα) for some

α > n+1
2 (1−

√
n

2(n−1) ), vanishes.

We also have the following equivalent of Theorem 2.10 (cf. Definition 2.9 for the
definition of a polymogeneous metric). The reader should note that the result below
holds for any polyhomogeneous metric g — this should be contrasted with Theorem
2.10 in which the metric g is assumed to be polyhomogeneous and uniformly C2 up
to boundary.

Theorem 3.10. Let g be a polyhomogeneous metric on a compact manifold
M̄ with boundary, ∂M , consider the equation

∆L̃,g̃X = Y , Y ∈ Aphg . (3.28)

There exists a solution X ∈ Aphg of (3.28). Any solution of the homogeneous
equation (3.28) satisfying either 1) X ∈ Hα

0 (M, g̃) with α > −n+1
2

√
n

2(n−1) , or 2)

X = O(xα) for some α > n+1
2 (1−

√
n

2(n−1) ), vanishes.

As far as classical regularity of solutions of eq. (3.1) is concerned, we have the
following Corollary of Theorems 3.8 and 2.11 (here the case dimM = 3 only will
be considered, other cases can be obtained in a similar way):

Theorem 3.11. Suppose that k ≥ 2, λ ∈ (0, 1], and let g ∈ Ck+1+λ(M̄) be a
Riemannian metric on a three dimensional manifold with boundary M , with M̄ –
compact. Define

(α−, α+) =
(

2−
√

3, 2 +
√

3
)
.

Consider the equation

∆L̃,g̃X = Y , Y ∈ xα Ck̂+λ(M̄) ,

α > α−, 1 ≤ k̂ ≤ k .

Suppose that either
u = O(xα−+ε) , ε > 0 ,

or
u ∈Wω;2

0 (Mx1 , x
−ndµg) , ω > 1 +

√
3 .

Then there exists σ > 0 such that the following hold:
((i)) Let α < 2 +

√
3 and let `0 ∈ N0 be the largest number such that

α+ `0 < 4.
(a) α+ k̂ < 5 =⇒ X ∈ ∩3

i=0x
α−i Ck̂−1+i+σ(M̄).

(b) k̂ = `0 + k0 + 1 =⇒ X ∈ ∩3
i=0x

α−i C`0+i+σ|k0(M̄).
((ii)) For α ∈ [2+

√
3, 4) the conclusions of point (i) hold with k there replaced

by k − 1.
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((iii)) Let α ∈ N0∩[1, 4]. If k̂ ≥ 6−α, then there existsXlog ∈ ∩3
i=−(4−α)x

α−i log xCk̂−1+i+λ(M̄)
such that

X −Xlog log x ∈ ∩3
i=0x

α−iCk̂−1+i+σ(M̄) .

If Xlog|∂M = 0, then Xlog ≡ 0.
((iv)) Let α > 4, suppose that k̂ ≥ 3, and let `0 ∈ N0 be the largest integer

such that 4 + `0 ≤ α.
(a) If 2+k̂ < α or if α ∈ N (or both) =⇒ X ∈ ∩4

i=0x
4−iCk̂−2+i+σ(M̄) .

(b) k̂ > `0 + 2 =⇒ X ∈ ∩4
i=0x

4−iC`0+i+σ|k̂−2−`0(M̄) .



CHAPTER 7

The Lichnerowicz equation.

1. Introductory remarks

In this chapter we shall examine the boundary behaviour of the solutions of
the scalar constraint equation, under various hypotheses on the differentiability of
the metric: this is obtained using the methods of Chapter 4 together with a fairly
standard “bootstrap” procedure. We shall construct solutions of the Lichnerowicz–
type equation,

4(n− 1)
n− 2

∆g̃ φ− R̃φ+ ζφ−κ − n(n− 1)φ
n+2
n−2 = 0 , κ > 0 , (1.1)

with the boundary condition

φ −→
x→0

|Dx|
n−2

2
g . (1.2)

Let us point out that under suitable conditions on the metric any solution of (1.1)
which is uniformly bounded above and uniformly bounded away from zero has
to satisfy (1.2), cf. Theorem 3.2. Here κ is a positive constant1, ζ is a function
satisfying ζ ≥ 0. ∆g̃ is the Laplace operator of the metric g̃ij = x−2 gij , ∆g̃ = D̃i D̃

i,
and R̃ is the scalar curvature of g̃, n = dimM ≥ 3. If n = 3 and κ = 7 the equation
(1.1) is of the form (1.23). Note also that if ζ = 0 then (1.1) is the Yamabe equation
(with the scalar curvature of the metric φ4/(n−2) g̃ij equal to −n(n− 1)).

We have the equality

R̃ = −n(n− 1) |Dx|2g + 2(n− 1)x∆gx+ x2R , (1.3)

where ∆g = DiD
i is the Laplace operator of the metric g, and R is the Ricci scalar

of g. If we assume that ζ = o(1), ∆gx = o(x−1) and R = o(x−2) (which holds
e.g. if g ∈ Ck+2(M̄) or if2 g ∈ M ε

k+2+λ, with ε > 0, k ∈ N0, λ ∈ [0, 1]), then from
(1.1)–(1.3) it follows that ∆g̃ φ −→x→0 0 if and only if (1.2) holds, except perhaps
when φ→ 0. In that last case one does not expect (M,φ4/(n−2) g̃) to be complete;
it certainly will not if φ ∈ C1(M̄). This shows that the boundary condition (1.2) is
necessary if the solution φ has to have some degree of regularity at ∂M (e.g., if we
look for solutions φ ∈ C2(M̄)), and if we require completeness of (M,φ4/(n−2) g̃)) .

Note that by carrying out a conformal transformation g → ψ2g, where ψ is
any strictly positive function of the same differentiability as the metric and which
coincides with |Dx|g near ∂M , we get

|Dx|g ≡ 1 (1.4)

1Most of the results of this chapter remain true when κ < −1 and ζ ≤ 0. When κ ∈ (−1, 0]
some further restrictions than non–positivity of ζ are needed for the existence theorem, cf. e.g.

section 2 for a discussion of an example with κ = −1.
2Recall that the space Mε

k+2+λ has been defined in Definition 2.1, page 62.

79
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in a neighbourhood of ∂M . Assuming (1.4), the linearization of (1.1) at φ = 1 gives
an operator which in a neighbourhood of ∂M takes the form

L = ∆g̃ + ξ , (1.5)

If we make the same hypotheses about the metric and ζ as in the discussion following
eq. (1.3), we obtain

ξ = − (n− 2)
4(n− 1)

[
R̃+

(n− 1)n(n+ 2)
(n− 2)

+ κζ

]
−→
x→0

− n . (1.6)

We can now rewrite (1.1) in the form

Lu = F (y, u) + S , F (y, 0) =
∂F (y, u)
∂u

∣∣∣
u=0

= 0 , (1.7)

with
u ≡ φ− 1 ,

L as in (1.5) and, assuming (1.4),

S =
(n− 2)
4(n− 1)

(R̃+ n(n− 1)− ζ) , (1.8)

F (y, u) =
n(n− 2)

4

{
(1 + u)(n+2)/(n−2) − 1− n+ 2

n− 2
u

}
− (n− 2)

4(n− 1)
ζ
{

(1 + u)−κ − 1 + κu
}
. (1.9)

Let us point out that the form (1.7) of the Lichnerowicz equation is sufficiently
general to cover many other matter models than the vacuum case considered above,
cf. the discussion in Section 2. For this reason, and with future applications in
mind, we will in the rest of this chapter discuss equations of this general form.

2. The linearized equation

Before passing to the non-linear equation (1.1) it will be necessary to give a de-
tailed discussion of the properties of the linear operator (1.5). In order to be able to
apply the results of Chapter 4 to that equation we have to prove existence of a regu-
larity interval for L. It has been shown in [3] that (α−, α+) = (−(n+1)/2, (n+1)/2)
is a strong regularity interval for L for Hα

0 (M, g̃) ≡W 0,0;2
k (M, g), with W 0,0;2

k (M, g)
defined in Section 1.3. This and Theorem 2.3 show that (α−, α+) = (−1, n) is a
regularity interval for Cαk+λ,`, with (n− 1)/2 < ` ≤ k. We shall show that a direct
analysis in the framework of weighted Hölder spaces gives (α−, α+) = (−1, n) as a
strong regularity interval for Cαk+λ.

Let us start with the observation, that for g ∈ Ck+2+λ(M̄), k ∈ N0, λ ∈ (0, 1),
we can write

L = x2

(
∆g −

(n− 2)
x

Dix ∂i

)
+ ξ

= |Dx|2g
{ (
x2∂2

x − x (n− 2) ∂x − n
)

+ L̃
}
. (2.1)

It follows that after a trivial rescaling L can be written in the form (2.1)–(2.2),
with L̃ of the form (2.3). The indicial roots for (2.1) are (cf. (2.7))

µ− = −1 , µ+ = n .



2. THE LINEARIZED EQUATION 81

To motivate the hypotheses of the theorem to follow, let us note that if g ∈M ε
k+2+λ,

k ∈ N0, λ ∈ (0, 1) for some ε > 0, then we can still formally define L̃ using eq. (2.1).
Doing so and assuming (1.4) we obtain

∀α ∈ R L̃xα = O(xα+ε) . (2.2)

In the result that follows, a scalar operator is defined as an operator which maps
functions on M to functions on M .

Theorem 2.1. Let L ∈ OP 2
C0

k+λ
(M)

, k ∈ N0, λ ∈ (0, 1), be a scalar geometric

elliptic operator satisfying (2.1)–(2.2) and (2.4), with L̃ satisfying (2.2) and with
indicial exponents µ− < µ+ (cf. eq. (2.7)). Consider the equation

Lu = f . (2.3)

Then

((i)) For every β ∈ R and α ∈ (µ−, µ+) there exists 0 < x1 ≤ x0 such that
for every f ∈ Cα,βk+λ(Mx1), ψ ∈ Ck+2+λ(∂̃Mx1), there exists a solution
u ∈ Cα,βk+2+λ(Mx1) of (2.3) satisfying u|∂̃Mx1

= ψ. Moreover L has a

strong regularity interval (α−, α+) for Cα,βk+λ(M) with α± = µ±, and
with no restrictions on β.

((ii)) Assume further that M̄ is compact, with µ+ > 0 and with L – elliptic
in the standard sense on CMx0 , with coefficients in Ck+λ(CMx0) and
with a0 ≤ 0, where a0 is the 0–order coefficient of L in (1.3) (this
condition on a0 is supposed to hold throughout M , not only near ∂M).
Then L : Cα,βk+2+λ(M) → Cα,βk+λ(M) is an isomorphism.

Remarks:

((i)) Assume that g is a M ε
k+1+λ metric on a compact manifold M̄ (with

boundary), k ≥ 0, λ ∈ (0, 1), ε > 0, and g̃ij = x−2 gij , where x is a
defining function for ∂M . Then Theorem 2.1 applies to equations of
the form

Lu ≡ ∆g̃u+ x−1ξ1 g̃(dx, du) + ξ2u = f , (2.4)

provided that ξ1 = p + ψ1, ξ2 = q|Dx|2g + ψ2, with ψa ∈ Cεk+λ, a=1,2,

and with δ ≡
(
n−1−p

2

)2

− q > 0. In that case the indicial exponents

are µ± = α± = n−1−p
2 ±

√
δ.

((ii)) Graham and Lee [42, Theorem 3.10] have proved the following related
result (we use here the notation of Remark (i) above): If (M, g̃) is
the hyperbolic space (M ≈ Rn, with g̃ — the maximally symmetric
metric of sectional curvature equal to −1) and ξ1 = ψ2 = 0, then for
α ∈ (µ−, µ+) the operator L defined in (2.4) is an isomorphism between
Cαk+2+λ(M) and Cαk+λ(M).

Proof: For σ ∈ R, let Lσ be the operator defined by Lσu = xσL(x−σu). Then Lσ
is of the above form with the indicial roots µ̃± = µ± + σ (cf. eqs. (2.7)–(2.4)). Let
α̃ = α + σ and fσ = xσf . By choosing σ > −µ− and considering the equivalent
equation Lσu = fσ we may without loss of generality assume that α̃ > µ̃− > 0 in
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the following. Now L̃σ can be written in the form

L̃σ = x2axx
∂2

∂x2
+ x2axA

∂

∂x

∂

∂vA
+ x2aAB

∂

∂vA
∂

∂vB
+ xaA

∂

∂vA
+ xax

∂

∂x
+ a0 .

Setting α = 0 in (2.2) we obtain a0 = O(xε). Note moreover that the constant
b of eq. (2.2) for Lσ so defined must be negative as µ̃− > 0. It follows that the
comparison principle applies for Lσ inMx0 , provided that x0 is chosen small enough.

Consider (2.3) with f ∈ Cα,βk+λ(M). A straightforward calculation shows that
there exist constants C, 0 < x1 = x1(α, β, L) ≤ x0 such that for x ≤ x1 the
functions

φ± = ±C ‖fσ‖Cα̃,β
0

xα̃
(

1 + ln
1
x

)β
are super– and sub–solutions of (2.3):

(Lσφ+ − fσ)
∣∣
Mx1

≤ 0 , (Lσφ− − fσ)
∣∣
Mx1

≥ 0 .

Choose a decreasing sequence {xk}∞k=0 ⊂ R so that xk → 0 as k →∞. As the 0–th
order coefficient of Lσ is negative on Mx0 , there is a unique solution uk of the equa-
tion Lσuk = fσ in CMxk

satisfying uk
∣∣∣
∂̃Mxk

= 0 and uk

∣∣∣
∂̃Mx1

= x−σ1 ψ. By a stan-

dard diagonalization procedure we can find a subsequence of {uk} which converges
to some uσ ∈ Cα̃,β0 (Mx1) ∩ C loc

2 (Mx1). The scaling estimates of Lemma 1.1 near
the boundary give uσ ∈ Cα̃,βk+2+λ(Mx1). This proves existence of a solution in the
appropriate space, uniqueness follows from the maximum principle. It follows that
Lσ is an isomorphism between

{
u ∈ Cα̃,βk+2+λ(Mx1) : u|∂̃Mx1

= ψ
}

and Cα̃,βk+λ(Mx1).

Consequently L is an isomorphism between
{
u ∈ Cα,βk+2+λ(Mx1) : u|∂̃Mx1

= ψ
}

and

Cα,βk+λ(Mx1). Now the existence of a regularity interval with α± = µ± follows from
point 1 of Proposition 1.2. The fact that (µ−, µ+) is a strong regularity interval
follows by construction from the form of the barriers φ±.

To prove point 2, note that if Lu = 0 in M and u = O(xµ−+ε) for some
ε > 0, then it follows by the definition of a regularity interval and by point 1 of this
Theorem that u = O(xµ+−ε) for any ε > 0. As µ+ > 0 by hypothesis, it follows
that u goes to zero at ∂M , and then u ≡ 0 by the maximum principle. Also note
that there exists a constant C such that the functions

φ̃± = ±C min
(

1, Cxα(1 + ln
1
x

)β
)
‖f‖Cα,β

0

are (weak) super– and sub–solutions of (2.3). The result follows by similar argu-
ments as in the proof of point 1. 2

What has been said so far can be summarized in the following:

Proposition 2.2. Let g ∈ Ck+2+λ(M̄) and let L be as in (2.1). Then L is a
geometric elliptic operator in the sense of Chapter 4. Moreover L is of the form
(2.1)–(2.4) with (µ−, µ+) = (−1, n), and L has a strong regularity interval (α−, α+)
for Cα,β0+λ, with α± = µ±. The same holds for g ∈M ε

k+2+λ, ε > 0.

Proposition 2.2 shows that we can use Theorems 1.3 and 2.1 to obtain tangential
regularity of solutions u of the linearized counterpart of eq. (1.1) whenever the
metric and the source f are tangentially regular. Similarly it follows that Theorems
2.6, 2.9 and 2.10 can be applied to give information about the classical regularity
of the solutions to equation (2.3):
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Corollary 2.3. Let M̄ be compact and assume that the hypotheses of The-
orem 2.1 hold. Assume further that L ∈ OP 2

Ck+λ(M̄)
is elliptic in a standard sense

in CMx0 , and that L̃ is of the form (2.3). Consider the equation (2.3) with

f ∈ xαCk+λ(M̄), α > µ−, u = O(xµ−+ε), ε > 0 .

Then there exists σ ∈ (0, 1) such that the following results hold:
((i)) Let α < µ+ and let `0 ∈ N0 be the largest integer such that α+`0 < µ+.

(a) α+ k < µ+ =⇒ u ∈ ∩2
i=0x

α−i Ck+i+σ(M̄).
(b) k = `0 + k0 =⇒ u ∈ ∩2

i=0x
α−i C`0+i+σ|k0(M̄).

((ii)) Let α ≤ µ+, µ+ − α ∈ N0. If k ≥ µ+ − α + 1, then there exists
ulog ∈ ∩µ+−α+2

i=0 xµ+−i Ck−(µ+−α)+i+λ(M̄) such that

u− ulog log x ∈ ∩2
i=0x

α−iCk+i+σ(M̄) .

If ulog|∂M = 0, then ulog ≡ 0.
((iii)) Let α > µ+, suppose that k ≥ 1, and let `0 ∈ N0 be the largest integer

such that µ+ + `0 < α.
(a) If µ++k < α or if α−µ+ ∈ N (or both) =⇒ u ∈ ∩2

i=0x
µ+−iCk+i+σ(M̄) .

(b) k > `0 =⇒ u ∈ ∩2
i=0x

µ+−iC`0+i+σ|k−`0(M̄) .
(c) If u = o(xµ+) and if k ≥ ˜̀, where ˜̀ is the smallest integer such

that ˜̀≥ α− µ+, then

u ∈ ∩˜̀+2
i=0 x

α−iCk−˜̀+i+σ(M̄) .

The above results provide rather detailed information about the linear coun-
terpart of eq. (1.1).

3. Existence of solutions of the non–linear problem

In order to prove existence of solutions to equation (1.1) we will first consider
a somewhat more general class of equations.

Proposition 3.1. Consider the equation for a scalar function u

∆g̃u+X(u) + F (y, u) = 0 , (3.1)

where g̃ = x−2g with x a defining function for ∂M , g a (locally) C1 metric on M , X
a continuous vector field on M , F (y, u) a continuous function in both arguments.
Suppose that

((i)) There exists a function u0 ∈ C0(M̄)∩C loc
2 (M) and constants x0, C1, α >

0 such that

∀ 0 < x < x0 |∆g̃u0 +X(u0)| ≤ C1x
α .

We shall moreover require that du0 ∈ Cα−1
0 (Mx0).

((ii)) There exist constants C±, L satisfying C− ≤ u0|Mx0
≤ C+ such that

∀y ∈M, F (y, C−) ≥ 0, F (y, C+) ≤ 0 ,
∀z1, z2 ∈ [C−, C+], y ∈M |F (y, z1)− F (y, z2)| ≤ L|z1 − z2| .

((iii)) There exist constants C2 > 0, x1 > 0 and β satisfying 0 < β ≤ α such
that for all 0 ≤ x ≤ x1 we have

∆g̃x
β +X(xβ) ≤ −C2x

β .
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((iv)) There exists a constant C3 > 0 such that for 0 < x < x0 we have

u0 ≤ u ≤ C+ =⇒ F (y, u) ≤ C3x
α ,

C− ≤ u ≤ u0 =⇒ F (y, u) ≥ −C3x
α .

Then there exists a solution u ∈ W loc;p
2 (M) for any 1 < p ≤ ∞ of equation (3.1)

satisfying

C− ≤ u ≤ C+, |u− u0|
∣∣∣
Mx0

≤ C4x
β (3.2)

for some constant C4.

Remarks: 1. The solution u needs not be unique.
2. Note that point (iv) above will be satisfied if |F (y, u0)| ≤ C3x

α and if F (y, u)
is monotonously decreasing in u for 0 < x < x0 and C− < u < C+.

Proof: We shall show that there exist weak barriers u± ∈ W loc;∞
1 (M), the

result then follows by a well known method using e.g. the monotone iteration
scheme (cf. e.g. [66, Theorem 2.3.1]). Let thus

u+ = min(u0 +Bxβ , C+),

u− = max(u0 −Bxβ , C−),

with some constant B which shall be specified later. Let x+ = min(x0, x1). For
those x ≤ x+ for which u+ = u0 +Bxβ we have

∆g̃u+ +X(u+) + F (y, u+) = ∆g̃u0 +X(u0)

+B(∆g̃x
β +X(xβ)) + F (y, u+)

≤ (C1 + C3)xα −BC2x
β

Let us set B+ = max
(

(C1+C3)x
α−β
+

C2
, (C+ −minM̄ u0)x−β+

)
; for all B ≥ B+ we then

have
∆g̃u+ +X(u+) + F (y, u+) ≤ 0.

Define Γ to be that connected component of the set {u0 + Bxβ = C+} which
intersects {0 < x < x+}. By the definition of B+, if B ≥ B+ we have Γ ⊂ {0 ≤ x ≤
x+}. Increasing B if necessary, we can assume that D(u0 + Bxβ) does not vanish
anywhere in {0 ≤ x ≤ x+} so that Γ is a C2 submanifold of M . An integration by
parts calculation shows that u+ is a weak supersolution of equation (3.1). Similarly
one shows that increasing B if necessary u− will be a weak subsolution of equation
(3.1) and the result follows. 2

Existence of bounded solutions of (1.1) (with ζ = 0) has been proved under
various conditions on (M, g̃) in [8, 9] and [6]. As far as existence of solutions of
(1.1) satisfying (1.2) is concerned, we have the following theorem:

Theorem 3.2. Let g ∈ M ε
k+2+λ be a metric on a compact manifold M̄ with

boundary, 0 ≤ ζ ∈ Cεk+λ(M), 0 < ε ≤ 1, λ ∈ (0, 1), k ≥ 0. There exists a solution
φ of (1.1) such that

φ− |Dx|
n−2

2
g ∈ Cεk+2+λ(M) . (3.3)

φ is unique in the class of uniformly bounded, uniformly bounded away from zero,
locally C2 solutions of (1.1).
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Remark: For ζ = 0, it has been proved in [6, § 3] that, for g ∈ C∞(M̄), the
condition x−(n−2)/2φ →x→∂M ∞ implies uniqueness. (Although the uniqueness
question is not discussed in [62] in the same context as in [6], it should be pointed
out that the a–priori estimate which is the key for the uniqueness proof of [6] has
also been obtained in [62].) It is not hard to see that this argument holds also
when ζ ∈ xC∞(M̄), ζ ≥ 0. For ζ = 0 and g ∈ C∞(M̄) it has been announced
without proof in [59] that u is unique provided that the manifold M̄ equipped
with the topology induced by the metric φ4(n−2)g is complete and is not a compact
manifold with boundary.

Proof: We may assume without loss of generality that |Dx|2g ≡ 1 in a neigh-
bourhood of ∂M . The argument of the proof of theorem 3.4 of [6] shows that there
exists a function φ1 ∈ C0

k−2+λ(M) satisfying 0 < C1 ≤ φ1 ≤ C2 for some constants

C1, C2 > 0, and satisfying φ1 − 1 ∈ Cεk+2+λ(M), such that the metric φ
4

n−2
1 g̃ has

constant scalar curvature equal to −n(n− 1). Replacing g̃ by φ
4

n−2
1 g̃ we may with-

out loss of generality assume that R̃ = R(g̃) = −n(n−1). Replacing φ by φφ−1
1 one

obtains an equation of the form (1.1) with possibly a different ζ ≥ 0. One readily
checks that the hypotheses of Proposition 3.1 are satisfied with u0 = 1, α = β = ε,
C− = 1 and C+ – a sufficiently large positive constant. Further regularity than
that asserted by Proposition 3.1 follows by elliptic regularity and a scaling estimate
(Lemma 1.1).

To prove uniqueness, let φ2 be the solution constructed above and let φ1 be
any other solution bounded from above and bounded away from zero. Conformally
rescaling the metric we can choose a “conformal gauge” in which φ2 = 1. In this
gauge eq. (1.1) reads

R̃ = −n(n− 1) + ζ .

Here ζ ≥ 0 is an appropriately rescaled counterpart of the function ζ of eq. (1.1).
The eq. satisfied by φ ≡ φ1/φ2 is eq. (1.1) with R̃ as above, so that we have

4(n− 1)
n− 2

∆g̃ φ+ ζ(φ−κ − 1) + n(n− 1)(φ− φ
n+2
n−2 ) = 0 . (3.4)

Set
α ≡ inf

M
φ .

Suppose first that α is attained at some point p ∈ M , in that case the maximum
principle shows that α cannot be smaller than one. Suppose next that α is not
attained on M , then by [42, Theorem 3.5] there exists a sequence of points pk ∈M ,
pk → p ∈ ∂M , such that 3

φ(pk) → α , lim inf
k→∞

∆g̃ φ(pk) ≥ 0 .

Evaluating eq. (3.4) at pk and passing to the limit k →∞ one obtains

ζ(α−κ − 1) + n(n− 1)(α− α
n+2
n−2 ) ≤ 0 .

It follows again that α cannot be smaller than one, so that we must have

inf
M
φ ≥ 1 .

3Here lim inf is taken in R ∪ {±∞}.
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One similarly shows that
sup
M

φ ≤ 1 ,

so that φ1 = φ2 follows. 2

4. Regularity at the boundary of the solutions

4.1. Polyhomogeneous or smooth backgrounds. The result that follows
establishes polyhomogeneity for a class of semilinear equations when the metric
is polyhomogeneous and when a polyhomogeneous approximate solution can be
found.

Theorem 4.1. Let g be a polyhomogeneous metric on M (cf. Definition 2.9)
and suppose that u ∈ C loc

2 (M) is a solution to the scalar equation

∆g̃u+ xX(u) + F (x, u) = 0, (4.1)

where X is a vector field on M satisfying X−pDx ∈ Aphg∩Cβ0 (M) for some β > 0
and p ∈ R. Let u0 ∈ Aphg ∩ C0(M̄) and assume that there exists q ∈ R such that

∂F
∂u (x, u0)− q|Dx|2g ∈ C

β
0 (M),

q <
(
n−1−p

2

)2
, µ+ > 0 ,

where

µ± =
n− 1− p

2
±

√(
n− 1− p

2

)2

− q . (4.2)

Further assume that for all i we have (∂iuF )(x, u0) ∈ C0(M̄) ∩ Aphg, and that
for all i, j and all multiindices µ the functions (x∂x)i∂µv ∂

j
uF are continuous in a

neighbourhood of the graph of u0 in M̄x0 × R. If

∆g̃u0 + xX(u0) + F (x, u0) ∈ Cα0
0 (M) , α0 > max(0, µ−) ,

u− u0 ∈ Cα0 (M) , α > max(0, µ−) ,

then
u ∈ Aphg ∩ C0(M̄x0) .

Remarks:

((i)) The condition on the function F will be satisfied if e.g. F is a rational
function of u with coefficients which are polyhomogeneous, appropri-
ately bounded functions of x.

((ii)) Let L and M satisfy the conditions of Corollary 2.3 and consider the
equation

Lu = F (y, u) , (4.3)

with F as considered above. Assumer further that the coefficients aα of
L as defined in eq. (1.3) are bounded polyhomogeneous functions. Then
we can define a metric g and a vector field X on M so that equation
(4.3) takes the form (4.1), with all the hypotheses of Theorem 4.1 being
satisfied.
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Proof: Decreasing α if necessary without loss of generality we may assume
α < µ+. By a scaling argument one easily shows that u − u0 ∈ C

min(α,α0)
∞ (M).

By Theorem 2.1 the linearized equation has a regularity interval (α−, α+) with
α± = µ± given by (4.2), and the result follows from Proposition 1.4 and Theorem
1.1. 2

Corollary 4.2. Let g be a polyhomogeneous metric on a compact manifold
with boundary M , let 0 ≤ ζ ∈ Aphg ∩ Cε0(M), ε > 0. There exists a solution φ of
(1.1) such that

φ− |Dx|
n−1

2
g ∈ Aphg ∩ Cε0(M) .

The solution φ is unique in the class of uniformly bounded, uniformly bounded
away from zero, locally C2 solutions of (1.1).

Proof: Existence and uniqueness follows from Theorem 3.2; regularity from

Theorem 4.1 – the appropriate approximate solution is φ0 = |Dx|
n−1

2
g . 2

When g ∈ C∞(M̄), the solution φ of (1.1) given by Corollary 4.2 will be
polyhomogeneous rather than smooth–up–to–boundary in general, cf. Appendix
A and also [5, 4].

4.2. Background metrics with finite differentiability at the bound-
ary. In the remainder of this chapter we shall prove various results concerning the
regularity at the boundary of the solution of the Lichnerowicz equation, when finite
differentiability only of the metric is assumed. As intermediate steps in the proof
of the final results we shall need to prove various weighted regularity results. Our
next result shows tangential regularity of the solutions of (1.1), under hypotheses
weaker than those of Theorem 4.1. It is convenient to introduce first the following
space of metrics:

Definition 4.3. We shall say that a metric g is of M ε
k+λ,m+µ class, 0 ≤ ε ≤ 1,

k ≥ max(1,m), if g ∈M ε
k+λ (cf. Definition 2.1), gij ∈ C0

k+λ,m+µ, and if for |γ| = 1
we have x∂γy g ∈ Cεk−1+λ,min(k−1,m)+µ (cf. (2.4)).

It can be noted that for g ∈ M ε
k+1+λ,m+µ we have ∆g̃ ∈ OP 2

C0
k+λ,min(k,m)+µ

. If

g ∈M ε
k+2+λ,m+µ, then the functions ξ of eq. (1.5) and S of eq. (1.7) satisfy

S ∈ Cεk+λ,m+µ , ξ + n|Dx|2g ∈ Cεk+λ,m+µ .

Theorem 4.4 (Tangential regularity). Let g ∈M ε
k+2+λ,m+µ, 0 ≤ ζ ∈ Cεk+λ,m+µ,

ε ∈ (0, 1], λ ∈ (0, 1), µ ∈ [0, 1], 1 ≤ m ≤ k + 2. Then the solution φ of (1.1) given
by Theorem 3.2 satisfies

φ− |Dx|(n−2)/2
g ∈ Cεk+2+λ,m+µ′(M) ,

with µ′ = 0 if µ = 0, while if µ > 0 then µ′ is an arbitrary number in [0, µ).

Proof: The proof is a bootstrap-commutation argument similar to that of
Theorem 1.3. For 1 ≤ i ≤ m let Xi = XA

i (v) ∂
∂vA , XA

i ∈ C∞(∂M) be smooth
vector fields on Mx0 . (1.7) implies that Xi(u) satisfies the equation

L̄Xi(u) ≡
[
∆g̃ + ξ − ∂F

∂u

]
Xi(u) = ρi ,

ρi ≡ Xi(S)−Xi(ξ)u+ [∆g̃, Xi]u+XA
i

∂F

∂vA
.
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From u ∈ Cεk+2+λ it follows that

ξ − ∂F

∂u
+ n|Dx|2g ∈ Cεk+λ , ρi ∈ Cεk−1+λ .

By Theorem 2.1 (−1, n) is a regularity interval for Cα0+λ for L̄, and from Xi(u) ∈
Cε−1
k+1+λ and from scaling estimates one obtains Xi(u) ∈ Cεk+1+λ, thus u ∈ Cεk+2+λ,1.

For 0 ≤ µ ≤ 1 the inclusion Cεk+2+λ,1 ⊂ Cεk+2+λ,0+µ implies u ∈ Cεk+2+λ,0+µ, which
in turn yields

ξ − ∂F

∂u
+ n|Dx|2g ∈ Cεk+λ,0+µ , ρi ∈ Cεk−1+λ,0+µ .

The claim that u ∈ Cεk+2+λ,1+µ follows by a difference quotient argument as in
the proof of Theorem 1.3, because by Proposition 2.2 (−1, n) is a strong regularity
interval for L̄. For m ≥ 1 the result follows by induction as in Theorem 1.3 from
the equation

L̄X1 . . . Xi(u) = [L̄,X1 . . . Xi−1]Xi(u) +X1 . . . Xi−1ρi .

2

Our next result proves classical regularity at the boundary of solutions of semi-
linear equations under appropriate conditions – this is the main result of this chapter
or, indeed, of this paper. To avoid a tedious but otherwise straightforward discus-
sion of various possibilities we only consider α, µ+ ∈ N, α ≤ µ+ and µ+ = α+ —
these conditions hold in our applications to the general relativistic constraint equa-
tions. Similar results can be obtained without those restrictions using the same
arguments. Let us emphasize that the following result holds for semilinear systems,
and we are not assuming that (4.4) is a scalar equation.

Theorem 4.5 (Classical boundary regularity for semilinear systems). Let (α−, α+),
α+ > 0, be a strong regularity interval for Cα0+λ(M) for a geometric elliptic oper-
ator L ∈ OP 2

Ck+λ(M̄)
, λ ∈ (0, 1). Let L be of the form (2.1)–(2.4) and assume that

µ+ = α+. Suppose that u ∈ C2
loc(M), let S ∈ xαCk+λ(M̄) for some α > α−, and

assume further that

α, µ+ ∈ N, k1 := µ+ − α ≥ 0 .

Let u ∈ C loc
2 (M), u = O(xα−+ε), α− + ε ≥ 0, ε > 0, solve the semilinear system of

equations

Lu = F (y, u) + S , F (y, 0) = ∂sF (y, s)
∣∣∣
s=0

= 0 . (4.4)

Let N be the smallest integer such that Nα > k. Assume that F (y, s) ∈ Ck+λ(M̄×
R) and that for all 0 ≤ i ≤ N+k+2 and for s ∈ R satisfying |s| ≤ K ≡ supMxo

|ua|
there are constants Ci such that

||∂isF (·, s)||Ck+λ(M̄) ≤ Ci. (4.5)

Then there exists σ > 0 such that
((i)) If α+ k < µ+ then u ∈ ∩2

i=0x
α−iCk+i+σ(M̄x0).

((ii)) If α+ k ≥ µ+ then

u ∈ ∩2
i=0x

α−iCµ+−α−1+i+σ|k−(µ+−α−1)(M̄x0) .

(If α = µ+, the case i = 0 should be excluded in the equation above.)
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Moreover for α+k ≥ µ+ + 1 there exist functions ui, i = 1, . . . , N̂ ,
such that u =

∑N̂
j=0 uj logj(x), with

u0 ∈ ∩2
i=0x

α−iCk+i+σ(M̄x0) , (4.6)

and for j ≥ 1,

uj ∈ ∩k1+2
i=0 xjµ+−iCk−k1+i+λ(M̄x0) . (4.7)

Here N̂ is the smallest integer such that N̂ > (k + 2)/µ+. If, finally,
u1

∣∣
∂M

= 0, then u ∈ ∩2
i=0x

α−iCk+i+σ(M̄x0).

Remarks:

((i)) We have imposed the somewhat unnatural condition (4.5) on F because
it is satisfied by our problem at hand, namely the general relativistic
constraint equations. A similar but somewhat worse result as far as
differentiability of the functions ui is concerned can be established by
the same methods assuming only that F (y, s) ∈ Ck+λ(M̄ × R).

((ii)) For N 3 α ≥ µ+ and k ≥ 1, and assuming that the remaining hypothe-
ses of Theorem 4.5 remain unchanged, we obtain u ∈ ∩2

i=0x
µ+−iCk+i+σ(M̄x0).

Similarly, for N 63 α ≥ µ+ and k ≥ 1 the regularity of the solution of the
non–linear problem will be the same as the for the solution of the linear
problem with the corresponding value of α, cf. Theorem 2.9 and the
remarks following that theorem. Clearly similar results can be obtained
under the hypotheses of Theorem 2.11.

Proof: In this proof, σ ∈ (0, 1) will be a constant which may vary from line
to line. Let Fm(x) = ∂ms F (x, s)

∣∣∣
s=0

. From Taylor’s Theorem we obtain

F (y, s) =
N∑
m=2

Fm(y)
m!

sm + sN+1FR(y, s) , (4.8)

with Fm ∈ Ck+λ(M̄) and FR ∈ Ck+λ(M̄ × R). Clearly, if v ∈ Cβk+λ,`+σ(M) for

`+ σ ≤ k + λ, then vN+1FR(x, v) ∈ C(N+1)β
k+λ,`+σ.

Let v be a function of the form given in point (ii) of the Theorem and satisfying
(4.6)–(4.7) with σ = λ. Then from (4.8) we get

F (y, v) =
N∑
j=0

F̃j(y) logj(x) + ξ .

From (4.6) with i = 0 and (4.7) with i = k1 we obtain ξ ∈ Ck+α+λ
k+λ,k+λ(M) and

F̃0 ∈ x2αCk+λ(M̄). Similarly the choice i = 0 in (4.7) gives F̃j ∈ xjµ+Ck−k1+λ(M̄)
for j ≥ 1. Expressions of the form F (y, v1 + v2) − F (y, v1) can be analyzed in
a similar way. Finally we note that if v1 is of the form given in point (ii) and
v2 ∈ Cβk+λ,`+σ with `+ σ ≤ k + λ, then

F (y, v1 + v2)− F (y, v1) ∈ Cα+β
k+λ,`+σ , (4.9)

which is easily seen by the mean value Theorem.
After those preliminary remarks, let us by induction construct an approximate

solution û of eq. (4.4). Set w−1 = 0 and let w0 ∈ ∩i∈N0x
α−iCk+i+λ(M̄) be given

by Lemma 2.5 so that Lw0 − S ∈ Ck+α,β0
k+λ,0+λ ∩ C

k+α+λ,β0
k+α+λ , β0 = 0 or β0 = 1. By
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interpolation for β ∈ N0 we have Ck+α,βk+λ,0+λ(M) ∩ Ck+α+λ,β
k+λ (M) ↪→ Ck+α+σ

k+σ,0+σ(M)
for some σ > 0.

Suppose then that for some m ≤ N we have found functions wi, i = −1, . . . ,m,
of the form

wi =
N̂∑
j=0

wi,j logj(x) , (4.10)

with coefficients wi,j satisfying (4.6)–(4.7). We shall moreover require that wi −
wi−1 ∈ C

(i+1)α
k+2+λ. Then a function wm+1 of the form (4.10) with wm+1 − wm ∈

C
(m+2)α
k+2+λ can be constructed as a solution of the equation

L(wm+1 − wm)− (F (y, wm)− F (y, wm−1)) ∈ Ck+α+σ
k+σ,0+σ(M) ,

by using the argument of the proof of Lemma 2.5. This completes the induction.
Note that for α+ k < µ+ we will have wi,j ≡ 0 for j > 1.

Letting û ≡ wN , we have

ξ := F (y, û) + S − Lû ∈ Ck+α+σ
k+σ,0+σ . (4.11)

Setting ũ = u− û we obtain

L(ũ) = F (y, ũ+ û)− F (y, û) + ξ , ξ ∈ Ck+α+σ
k+σ,0+σ . (4.12)

We have u ∈ C
α−+ε
0 , so that decreasing ε if necessary we obtain ũ ∈ C

α−+ε
0 .

Equations (4.9) and (4.12) give Lũ ∈ Cα0 . By point (i) of Lemma 1.1 and the
weighted Sobolev embedding we obtain ũ ∈ Cα−+ε

1+λ . Iterating this argument using
point (ii) of Lemma 1.1 and (4.9) gives ũ ∈ Cα−+ε

k+2+λ. We have:

Lemma 4.6. For 0 ≤ ` ≤ k and γ < min(k − `+ α+ σ, µ+) we have

ũ ∈ Cγk+2+λ,`+σ .

Proof: The argument below is rather similar to that of Lemma 1.3. Some
care, however, must be taken because of the finite degree of differentiability of the
functions here. Let ` ≥ 0, choose β so that 0 < β ≤ α− + ε, β < µ+ and 2β ≤ α,
and let σ ∈ (0, 1) satisfy `+σ < k+λ. Let θ ∈ (0, β) and K ∈ N be chosen so that
Kθ = `+ σ. Let εκ, κ = 0, . . . ,K be any increasing sequence of numbers such that
ε0 = 0, and εκ < σ. Note that for 0 ≤ ` ≤ k eq. (4.11) implies that

ξ ∈ Ck−`+α+σ
k+λ,`+σ .

We will argue by induction. Assume that ũ ∈ Cβk+λ,κθ−εκ ; we have shown that this
holds with κ = 0. Then (4.9) and (4.12) imply

Lũ ∈ C2β
k+λ,κθ−εκ ∩ C

2β−1
k+λ,κθ+1−εκ .

Lemma 2.2 gives
Lũ ∈ C2β−(1−τ)

k+λ,κθ+1−τ−εκ+1
,

for any τ ∈ (0, 1). Choosing τ = 1− θ we get

Lũ ∈ Cβk+λ,(κ+1)θ−εκ+1
,

and, increasing slightly εk+1, Theorem 1.3 gives

ũ ∈ Cβk+2+λ,(κ+1)θ−εκ+1
.
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This completes the induction step.
We have thus shown that ũ ∈ Cβk+2+λ,`+σ with some β > 0. An iterative

argument based on (4.9), (4.12) and Theorem 1.3 completes the proof. 2

Returning to the proof of Theorem 4.5, suppose first that α+ k < µ+. In this
case Lemma 4.6 with ` = 0 gives ũ ∈ Ck+α+σ

k+2+σ,0+σ(Mx0), and the result follows from
Proposition 2.2.

In the case α+k ≥ µ+ some more work is needed. If k = µ+−α our conclusion
follows again from Lemma 4.6 and Proposition 2.2. (Note that in this case our
result is weaker than for k > µ+ − α, cf. point (ii).) For k > 0 set f̃ = L(ũ)
and rewrite equation (4.12) in the form (2.46). Then arguing as in the proof of
Theorem 2.9 we find, using Lemma 2.7, a function ψ̂ ∈ ∩i∈N0x

µ+−iCk+i+λ(M̄)
with Lψ̂ ∈ Ck+µ++σ

k+σ,0+σ(M) and ũ ≡ u − û − ψ̂ = o(xµ+). Now we can change w0 as
defined above to w0 + ψ̂ and repeat the induction argument described previously to
obtain a new approximate solution, still denoted û, of the form (4.10) and satisfying
(4.11). A direct analysis of the identity (2.47) of the proof of Theorem 2.9 gives ũ ≡
u− û ∈ Cµ++σ

k+2+σ,k−(µ+−α)+σ(Mx0). We wish to show that in fact we must have ũ ∈
Ck+α+σ
k+2+σ,0+σ(Mx0). For suppose first that k ≤ µ+. In this case Lũ ∈ Ck+α+σ

k+σ,0+σ(M)
by (4.9), and Lemma 2.8 with β = α, m = ` = k yields ũ ∈ Ck+α+σ

k+2+σ,0+σ(Mx0).
To handle the case k > µ+, suppose that ũ ∈ Cβ+σ

k+2+σ,`+σ(Mx0) with some β ∈ N
satisfying β < k+α and some ` ≥ m := min(k+α−β, α). Then (4.9) and Lemma
2.8 yield ũ ∈ Cβ+m+σ

k+2+σ,`−m+σ(Mx0). Applying this argument repeatedly leads indeed
after a finite number of steps to ũ ∈ Ck+α+σ

k+2+σ,0+σ(Mx0). The proof of point (ii) is
completed by Proposition 2.2. 2

The classical regularity up–to–boundary of solutions of the Lichnerowicz equa-
tion up to the threshold n − 1 = dimM − 1 is a straightforward corollary of the
above:

Theorem 4.7 (Boundary regularity for solutions of the Lichnerowicz equation).
Let M be an n–dimensional manifold with boundary with M̄ – compact. Let
g ∈ Ck+2+λ(M̄), suppose that ζ ≥ 0 and suppose moreover that ζ ∈ Ck+2+λ(M̄) ∩
C1

0 (M), or ζ ∈ xCk+1+λ(M̄), or ζ ∈ x2Ck+λ(M̄), λ ∈ (0, 1), k ∈ N0. There exists
σ ∈ (0, 1) such that the solution φ of (1.1) given by Theorem 3.2 satisfies

k + 2 ≤ n− 1 =⇒ φ ∈ Ck+2+σ(M̄) ,
k + 2 = n+ k1, k1 ∈ N0 =⇒ φ ∈ Cn−1+σ|k1+1(M̄) .

Moreover in the case k+2 > n there exist functions φj ∈ ∩ni=0x
jn−iCk+2−n+i+λ(M̄),

j = 1, . . . , N , such that

φ−
N∑
i=1

φi logi x ∈ Ck+2+σ(M̄) .

Here N is the smallest integer such that N > (k + 2)/n. If finally φ1|∂M = 0, then
φ ∈ Ck+2+σ(M̄).

Remark: The results of Theorem 4.7 are optimal (except perhaps for the
modulus of Hölder continuity σ which we leave unspecified), as the xn log x term
generically arises in the solution of (1.1), cf. Appendix A. The reader is also



92 7. THE LICHNEROWICZ EQUATION.

referred to [6, 5] for an analysis under which conditions on the geometry it holds
that φ1|∂M = 0; in these references dim M = 3 is assumed.



APPENDIX A

Genericity of log-terms.

In this section we shall show that for generic “background fields”, in a sense
to be made precise in the statements of Proposition 1.1 and Theorems 2.2, 2.3, the
Cauchy data constructed by the conformal method will “pick-up” log-terms, even
though the background fields are smooth up to boundary. The results of this section
are somewhat related to those of [5]. In [5] rather more geometric results can be
found; on the other hand, the proofs and the discussion here are much simpler.

To avoid a tedious differentiability–chase we have stated all the results in a
C∞ setting. However, the calculations presented here carry immediately over to
the finite differentiability case. Some of the equations below can be somewhat
simplified if one makes use of the “almost Gaussian coordinates” of Appendix B.

Throughout this section M is a manifold with boundary with M̄ – compact,
and with dimM ≥ 3. In some results we shall specialize to the physically relevant
case n = 3, but this condition is not assumed unless specified otherwise. The reader
is referred to Chapter 3 for any notation which is not defined here.

Let us start with the vector constraint equation. As explained at the beginning
of Chapter 6, there are at least two methods of constructing solutions to this equa-
tion. Here we shall analyze in detail the method described in section 2; assuming
smoothness of the background fields the method of section 3 gives equivalent re-
sults. Note, however, that the discussion of decay rates of various fields of section
2 has been tailored to fit the construction of section 3. This explains the difference
between the decay rates of section 2 and those of section 1 below.

1. The vector constraint equation

Proposition 1.1. Let g ∈ C∞(M̄), denote by i∂M the embedding i∂M : ∂M →
M̄ , and by ΓC∞(∂M)(i∗∂MT

2M̄) the space of smooth sections of the bundle i∗∂MT
2M̄

over ∂M obtained by pull-back by i∂M of the bundle T 2M̄ of two-contravariant
tensors over M̄ , suppose that α = −2 or α = −1. For Aij ∈ C∞(M̄) let X be any
solution of the equation

Di L
ij ≡ 1

2
Di

(
DiXj +DiXi − 2

n
DkX

k gij + xαAij
)

= 0 (1.1)

given by Theorem 2.8, point 3 thus

Lij = xα Lijα + log xLijlog , Lijα , L
ij
log ∈ C∞(M̄) . (1.2)

((i)) Let α = −1. There exists a closed subspace A ⊂ ΓC∞(∂M)(i∗∂MTM̄)
of finite dimension not larger than (dim ∂M+1)(dim ∂M+2)/2 = n(n+
1)/2 such that for allAij satisfyingDix

(
|Dx|2gAij−DxkDxjAik

)
(0, v) 6∈

A we have
Lijlog(0, v) 6≡ 0 .

93



94 A. GENERICITY OF LOG-TERMS.

((ii)) Let α = −2. For any A
◦

∈ ΓC∞(∂M̄)(i∗∂MT
2M) and ψ ∈ C∞(∂M̄) there

exists a closed subspaceA
A
◦
,ψ
⊂ ΓC∞(∂M)(i∗∂MTM̄), of finite dimension

not larger than (dim ∂M + 1)(dim ∂M + 2)/2, such that for Aij satis-
fying Aij(0, v) = A

◦
ij(v), DixDjx

∂Aij

∂x (0, v) = ψ and Dix
(
|Dx|2g ∂A

ij

∂x −

DxkDx
j ∂Aik

∂x

)
(0, v) 6∈ A

A
◦
,ψ

we have

Lijlog(0, v) 6≡ 0 .

Moreover for all Aij for which a solution with Lijlog(0, v) 6≡ 0 exists, there exists
no solution of (1.1) satisfying

X ∈ xα+1
(
C∞(M̄) + x log xC∞(M̄)

)
,

such that x−α Lij ∈ C−α(M̄).

Proof: Uniqueness up to the addition of a smooth (up to boundary) solution
of the homogeneous equation follows from Theorem 2.8, thus the only thing to show
is the non-vanishing of Lijlog. Let thus

α = −1 X = X0 + log xXlog , (1.3)

α = −2 X = x−1X−1 + log xXlog , (1.4)

X0, X−1, Xlog ∈ C∞(M̄). X solves the equation

∆L,gX
j ≡ 1

2
Di

(
DiXj +DjXi − 2

n
DkX

k gij
)

= xα−1 Zj , (1.5)

with

Zj = −x−α+1Di(xαAij) = −
(
αAxj + xDiA

ij
)
. (1.6)

Inserting (1.3) in (1.5) one finds, with m = |Dx|−1
g Dx (thus m is the inward

pointing unit normal to ∂M),

α = −1 ∆L,gX
j = −

|Dx|2g
2x2

(
Xj

log +
n− 2
n

g(m,Xlog)mj

)
+O

(
x−1

)
,

α = −2 ∆L,gX
j =

|Dx|2g
x3

{
Xj
−1 +

n− 2
n

g(m,X−1)mj

}
(0, v)

−
|Dx|2g
2x2

{
Xj

log +
n− 2
n

g(m,Xlog)mj + L1(X−1)
}

+O(x−1) ,

where L1 is a homogeneous linear first order differential operator which has the
property that L1(X−1)(0, v) does not depend upon ∂xX−1(0, v). For α = −1 we
thus must have (cf. the beginning of Chapter 3 for conventions on coordinate sys-
tems) (

Xj
log +

n− 2
n

g(m,Xlog)mj

)
(0, v) = −

(
|Dx|−2

g Axj
)

(0, v) ,

which can be algebraically solved for Xj
log(0, v) in terms of Axj(0, v), and which

shows that Xj
log(0, v) runs over ΓC∞(∂M)(i∗∂MTM̄) as Axj(0, v) does. For α = −2
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one obtains(
Xj
−1 +

n− 2
n

g(m,X−1)mj

)
(0, v) =

(
|Dx|−2

g Axj
)

(0, v) , (1.7)(
Xj

log +
n− 2
n

g(m,X)mj

)
(0, v) = −

(
|Dx|−2

g

∂Axj

∂x

)
(0, v) + F , (1.8)

F =
(
|Dx|−2

g

[
DiA

ij − ∂xA
xj
])

(0, v)− L1(X−1)(0, v) . (1.9)

From (1.7) one can algebraically determine Xj
−1(0, v) in terms of Axj(0, v) and since(

DiA
ij − ∂Aij

∂x

)
(0, v) depends upon Aij(0, v) and its tangential derivatives only,

one finds that F in (1.8) is uniquely determined by Aij(0, v); (1.8) implies then
that for any fixed Aij(0, v) the vector field Xj

log(0, v) runs over ΓC∞(∂M)(i∗∂MTM̄)

as ∂Axj

∂x (0, v) does. Now a simple calculation shows that

2Lijlog ≡ DiXj
log +Dj Xi

log −
2
n
DkX

k
log g

ij ,

and to finish the proof we have to show that the vanishing of Lijlog(0, v) implies that
Xj

log is of rather special form. Let hij be the induced metric on ∂M ,

hij = gij −mimj , (1.10)

let Di denote the covariant Riemannian derivative operator of the metric hij , set
βi = mj Djmi. Setting

φ = Xi
logmi , Y i = Xi

log − φmi , (1.11)

one finds

2mimj L
ij
log =

2
n

[
(n− 1)

(
mkDkφ− Y kβk

)
−DkY k + φλ

]
,

(1.12)

2hikmj L
kj
log = DmY i +Diφ+ λik Y

k + φβi , (1.13)

2(hikh
j
`L

k`
log +

1
n− 1

mkm` L
k`
logh

ij) = DiY j +DjY i − 2
n− 1

DkY khij

−2φ
(
λij − 1

n− 1
λhij

)
, (1.14)

where λij is the extrinsic curvature of ∂M (λij = −hki h`jDkm`), λ = hij λij , and

DmY i = hijm
kDk Y

j .

For dim ∂M ≥ 3 eq. (1.14) shows that the vanishing of Lk`logh
i
kh

j
` leads to an overde-

termined system of equations for Xi
log−mkX

k
logm

i, and a straightforward repetition
of the argument which shows that the space of conformal Killing vectors cannot
exceed (dim ∂M + 1)(dim ∂M + 2)/2 yields the same upper bound for the dimen-
sion of the space of Y ’s for which we have Lijlog = 0. In the physically relevant case
dim ∂M = 2, the operator

Y i −→ DiY j +DjY i − 2
n− 1

DkY khij

(which maps vectors to symmetric traceless tensors) is elliptic, with (as is well
known)
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((i)) trivial kernel if g(∂M) > 1, where g(∂M) is the genus of ∂M ;
((ii)) two dimensional kernel if ∂M ≈ S1 × S1;
((iii)) six dimensional kernel if ∂M ≈ S2.

It follows again that the condition Lk`log = 0 will hold for at most a (dim ∂M +
1)(dim ∂M + 2)/2 dimensional space of Y ’s, and the result follows. 2

For the proof of Theorem 2.2 we shall need the following proposition:

Proposition 1.2. Letmi be the unit normal to ∂M , define T ⊂ ΓC∞(∂M)

(
i∗∂MT

2M̄
)

as the space of tensors Aij(v) over ∂M satisfying miA
ij = gijA

ij = 0, let P be
the projection on T : (PA)ij = hikh

j
`

(
Ak` − hmnAmnh

k`/(n− 1)
)
. (Here h is

the metric induced by g on ∂M ,cf. eq. (1.10).) For any A
◦

, Â ∈ T there exists a
transverse traceless tensor field Lij ∈ x−2C∞(M̄) + lnxC∞(M̄) such that

Lij(x, v) = A
◦

(v)x−2 + Lij−1(v)x−1 +O(lnx) , (1.15)

(PL−1)ij = Âij . (1.16)

Remarks:

((i)) Note that for a transverse traceless tensor of the form (1.15) the con-
dition A

◦

(v) ∈ T is necessary.
((ii)) The question of existence of transverse traceless tensors Lij ∈ x−α C∞(M̄),

α = 1, 2, such that xαLij |∂M 6≡ 0 is considered in [5], and is shown to
be related to the vanishing of the space–time Weyl tensor at ∂M .

Proof: Let Aij ∈ C∞(M̄), we have

Di(x−2Aij)(x, v) = −2x−3Axj(0, v) + x−2
[
DiA

ij(x, v)− 2x−1
(
Axj(x, v)−Axj(0, v)

)]
,

(1.17)

where Axj = DixA
ij . Let Aij(0, v) = A

◦
ij(v), so that Axj(0, v) = 0. Taylor

expanding there exist Rj ∈ C∞(M̄), Sj ∈ C∞(M̄) such that

Axj(x, v) = ∂xA
xj(0, v)x+

1
2!
∂2
xA

xj(0, v)x2 + x3Rj ,

∂xA
xj(x, v) = ∂xA

xj(0, v) + ∂2
xA

xj(0, v)x+ x2Sj .

Define
“ΓA” = DxA

xj − ∂xA
xj ;

(1.17) can be rewritten as

Di(x−2Aij)(x, v) = x−2
[
−∂xAxj(0, v) +

(
“ΓA” +DAA

Aj
)

(x, v)
]

+ Sj − 2Rj .

If we choose Aij(x, v) so that

∂xA
xj(0, v) =

(
“ΓA

◦

” +DAA
◦
Aj
)

(0, v) ,

P∂xA
ij(0, v) = Âij(v) ,

we obtain
Di(x−2Aij) ∈ x−1C∞(M̄) ,

therefore by Theorem 2.8 there exists a solution X ∈ C∞(M̄) + x lnxC∞(M̄) of
equation (1.1). 2
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2. The coupled system

In the remainder of this section we shall restrict our considerations to n =
dimM = 3. Before analysing the presence or absence of log-terms in the solutions
of the Lichnerowicz equation, recall that we are mainly interested in conformal
classes of “background fields” [(g, L)], where L is a TT -tensor, in which the pair
(g, L) is identified with the pair (ψ2g, ψ−5L) for any positive function ψ ∈ C∞(M̄):
(g, L) and (ψ2g, ψ−5L) lead to the same solution of the constraint equations. We
shall assume that L ∈ x−2C∞(M̄)+log xC∞(M̄), as forced upon us by Proposition
1.1 in generic situations, it should be stressed that the log terms in L will not affect
the conclusion of Theorem 2.2, because they do not affect the x3 log x terms in the
expansion of solutions of the Lichnerowicz equation.

Lemma 2.1. Let x, x1 ∈ C∞(M̄) be two defining functions for ∂M and let
Lij be a transverse traceless tensor for the metric g. Suppose that

(
gij , L

ij
)

=(
ψ4g1

kj , ψ
−10Lij1

)
, g ∈ C∞(M̄), L ∈ x−2C∞(M̄)+lnxC∞(M̄), with some bounded

positive function ψ ∈ C3(M̄), ψ uniformly bounded away from zero. Set

g̃ij = x−2gij , g̃1
ij = x−2

1 g1
ij , L̃ij = x3Lij , L̃ij1 = x3

1L
ij
1 .

Let φ, φ1 be uniformly bounded, locally C2 solutions of

8∆g̃φ− R̃φ+ |L̃|2g̃φ−7 − 6φ5 = 0

8∆g̃1φ1 − R̃1φ1 + |L̃1|2g̃1φ
−7
1 − 6φ5

1 = 0

φ has a x3 log x term in the asymptotic expansion at ∂M if and only if φ1 has one.

Proof: By the uniqueness part of Theorem 1.1 we have

φ1 = ψ

(
x

x1

) 1
2

φ . (2.1)

Since x
x1

is in C∞(M̄), the result follows by comparing coefficients in an asymptotic
expansion of both sides of (2.1). 2

Theorem 2.2. Let X be the collection of pairs (g, L), where g ∈ C∞(M̄) is a
Riemannian metric and Lij ∈ x−2C∞(M̄) + log xC∞(M̄) is transverse traceless.

((i)) The subset X
◦

of X consisting of pairs for which the log terms in the
expansion of the solutions of the Lichnerowicz equation do not vanish
is open and dense in the C∞(M̄) topology on X.

((ii)) The set X̂ = X\X
◦

is an infinite dimensional closed subspace of X.

Proof: Choose some defining function x for ∂M , by Lemma 2.1 the vanishing
or not of the log terms does not depend upon this choice. Let ḡij = |Dx|2ggij , in
the metric ḡij we have ḡijx,ix,j = 1, set g̃ij = x−2ḡij . Let φ be the unique solution
of

8∆g̃φ− R̃φ+ |L̃|2g̃φ−7 − 6φ5 = 0 (2.2)

satisfying φ|∂M = 1. By the results of Chapter 7 there exist φ1, φ2, φlog ∈ C∞(∂M)
such that

φ− 1− φ1x− φ2x
2 − φlogx

3 log x ∈ C3+ε
3 , ε > 0 . (2.3)
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Let m̄i = ḡijx,j , h̄ij = ḡij − m̄im̄j , let λ̄ij be the extrinsic curvature (in the metric
ḡij) of the sets x = const., λ̄ = h̄ij λ̄ij , define the expansion functions λ̄0, etc., by

λ̄(x, v) = λ̄0(v) + xλ̄1(v) + x2λ̄2(v) +O(x3) (2.4)

|Dx|−5
g Lij(x, v) =

A
◦
ij(v)
x2

+
Âij(v)
x

+O(lnx) (2.5)

R(ḡ)(x, v) = R̄0(v) + xR̄1(v) +O(x2) , (2.6)

ḡxA(x, v) = ḡxA(0, v) + x ˙̄gxA(v) +O(x2) , (2.7)

where R(ḡ) is the scalar curvature of the metric ḡij . Inserting (2.3)–(2.7) in (2.2)
one finds with the help of a simple REDUCE code

φ1 = λ̄0/8 , (2.8)

φ2(v) =
1
24

(ḡij ḡk`)(0, v)A
◦
ij(v)A

◦
j`(v) +

1
6
[
λ̄1(v)− R̄0(v) + (D̄ixD̄

iλ̄0)(0, v)
]

− 23
384

λ̄2
0(v) , (2.9)

φlog(v) = − 1
16

(ḡij ḡk`)(0, v)
[
A
◦
ik(v)Âj`(v) +A

◦
ik(v)A

◦
j`(v)λ̄0(v)

]
+ ψ(v) , (2.10)

ψ(v) =
{

1
32

[
R̄1 − 4λ̄2 + 5λ̄0λ̄1 − λ̄0R̄0 −∆gλ̄0 + ˙̄gxA∂Aλ̄0

]
− 207

4096
λ̄3

0

+
9

256
λ̄0D̄ixD̄

iλ̄0 −
3
4
D̄ixD̄

iφ2

}
(0, v) .(2.11)

It follows from (2.10)–(2.11) that the condition φlog = 0 defines a closed subspace
of the set of all (g, L), thus X

◦

is an open subset.
Suppose that (g, L) ∈ X̂, thus φlog = 0. By Proposition 1.2 A

◦
ij(v) and Bij =

h̄ikh̄
j
` (Âk`− h̄mnÂmnh̄k`) can assume arbitrary values satisfying A

◦
ijmj = Bijmj =

h̄ijA
◦
ij = h̄ijB

ij = 0, and one can thus find a sequence
(
g, Lijk

)
−→k→∞(g, Lij)

such that φlog(v) 6≡ 0 by choosing A
◦

k
ij and Bijk suitably, and the theorem follows.2

In Theorem 2.2 it was essential that the space of TT -tensors considered included
those for which (x2Lij)|∂M 6≡ 0. When x2Lij |∂M = 0 we have the following:

Theorem 2.3. Let g ∈ C∞(M̄) be a Riemannian metric, and let L be a
transverse traceless tensor with respect to g. Consider the sets Xa, a = 1, 2, 3 of
pairs (g, L) such that

X1 : L ∈ x−1C∞(M̄) + log xC∞(M̄)
X2 : L ∈ C∞(M̄)
X3 : L ≡ 0 .

((i)) The set X
◦

a, a = 1, 2, 3, of pairs (g, L) for which the solution of the
Lichnerowicz equation has a x3 log x term is open and dense in Xa.

((ii)) In each case the sets X̂a = Xa\X
◦

a are closed infinite dimensional
subsets of Xa.

Remark: Note that for (g, L) ∈ X̂a, a = 2, 3, the solution φ of the Lichnerowicz
equation is smooth. On the other hand for generic (g, L) ∈ X̂1, φ is expected to be
C4(M̄) but not C5(M̄) because of x5 log x terms coming from |L̃|2g̃. The blow up of
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the fifth derivatives is in this case mild enough so that one gets φ ∈ H5(M, g, dµg),
xφ−1/2 ∈ H6(M, g, dµg).

Proof: In the notation of the proof of Theorem 2.2, let D̄i be the Riemannian
connection of the metric h̄ij = ḡij − m̄im̄j . A 2+1 decomposition calculation gives
(note that m̄iD̄im̄

j = 0 because m̄idx
i = dx)

R̄ = 2m̄kD̄kλ̄− λ̄ij λ̄ij − λ̄2 + R̄ , (2.12)

where R̄ is the curvature scalar of h̄AB , so that if the coordinates vA are chosen to
satisfy ḡxA ≡ 0 one finds

R̄1 ≡ ∂R̄

∂x

∣∣∣
∂M

= m̄kD̄kR
∣∣∣
∂M

=
(
2m̄im̄jD̄iD̄j λ̄− 2λ̄ijm̄kD̄kλ̄ij − 2λ̄m̄kD̄kλ̄+ m̄kD̄kR̄

)
+ 2λikλjiλjk

∣∣∣
∂M

and (2.10) gives

φlog(v) =
1
32
[
−2λ̄ijm̄kD̄kλ̄ij + λ̄0m̄

kD̄kλ̄
]

(0, v) + ψ̄(v) , (2.13)

Here ψ̄ depends only upon gij

∣∣∣
∂M

, ∂gij

∂x

∣∣∣
∂M

and their derivatives in directions tan-

gent to ∂M . Suppose that (g, L) is such that φlog = 0. If λ̄ij
∣∣∣
∂M

= 0, in an

arbitrary neighbourhood of g one can find a metric g′ such that λ̄′ij
∣∣∣
∂M

6= 0. An

appropriate small perturbation of ∂2g′ij

∂x2 which does not change g′ij
∣∣∣
∂M

and ∂g′ij

∂x

∣∣∣
∂M

will then make φlog non-zero, which shows density of X
◦

a. 2





APPENDIX B

1. “Almost Gaussian” coordinates.

Consider a metric g ∈ Ck+λ(M̄); if k ≥ 2 Gauss coordinates near ∂M can
be introduced. Namely, 1) there exists a finite cover {Ui}Ii=0 of ∂M and x0 > 0
such that ∪Ii=1[0, x0) × Ui is a neighbourhood of ∂M and 2) in local coordinates
y = (x, vA), x ∈ [0, x0), vA ∈ Ui we have

gij = g(dyi, dyj) ∈ Ck−2+λ((0, x0)× Ui), (1.1)

gxx ≡ 1, gxA ≡ 0. (1.2)

The problem is, that the coordinates (x, v) above are obtained through a solution
of the geodesic equation, which leads to the threshold k ≥ 2, and which for k <∞
leads to the loss of differentiability of g in the new coordinate system, as emphasized
in eq. (1.1). This loss of differentiability is quite annoying, as then the use of exact
Gauss coordinates in various applications leads to stronger restrictions on the degree
of differentiability of the metric. On the other hand, for many applications it is
sufficient for (1.2) to hold only approximately near ∂M . The aim of this Appendix
is to show that this can be achieved without losing differentiability of gij . More
precisely, we have the following:

Proposition 1.1 (“Almost Gaussian Coordinates at ∂M”). Let 0 ≤ k ≤ ∞,
λ ∈ [0, 1], consider a Riemannian metric g ∈ Ck+λ(M̄) on M̄ , with ∂M — compact.
There exists x0 > 0 and a finite cover {Ui}Ii=1 of ∂M together with coordinates
(yi) = (x, vA) ∈ [0, x0] × Ui, such that ∪Ii=1[o, x0] × Ui is a neighbourhood of ∂M ,
and such that

g(dyi, dyj) = gij ∈ Ck+λ((0, x0)× Ui), (1.3)
g(dx, dx)− 1 = o(xk), (1.4)
g(dx, dvA) = o(xk). (1.5)

Remark: If λ > 0, (1.4) – (1.5) can be strengthened to gxx − 1 = O(xk+λ),
gxA = O(xk+λ).

Proof: If k = ∞ we can use Gauss coordinates near ∂M , and the result
follows. Suppose thus that k < ∞, let p ∈ ∂M , let O be any conditionally
compact coordinate neighbourhood of ∂M in which O ∩ ∂M = {x = 0}, with
gij ≡ g(dyi, dyj) ∈ Ck+λ(Ō). Passing to a subset of O if necessary without loss
of generality we may assume O ≈ [0, x0) × U , U ⊂ ∂M . Coordinate systems of
this form will be called cylindrical. By Lemma 3.1 there exists x̄ ∈ Ck+1+λ(Ū)
satisfying

∂x̄

∂x

∣∣∣
x=0

= (gxx)−1/2, x̄
∣∣∣
x=0

= 0.
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The implicit function theorem implies that there exists O1 ⊂ O such that (x̄, v)
are coordinates on O1, O1 being cylindrical in the coordinates (x̄, v). We also have
ḡxx|x̄=0 = g(dx̄, dx̄)|x=0 = gxx(∂x̄∂x )2|x=0 = 1. Passing to the coordinates (x̄, v),
dropping the “1” on O1 and dropping bars on x̄ and on ḡxx we thus have

gxx
∣∣∣
x=0

= 1. (1.6)

Let φ, fA ∈ Ck+1+λ(Ō), consider

x̄ = x+ φ(x, v), (1.7)

v̄A = vA + fA(x, v), (1.8)

hence

ḡxx = gxx + 2gxi ∂φ∂xi + gij ∂φ∂xi
∂φ
∂xj , (1.9)

ḡxA ≡ g(dx̄, dv̄A) = gxA + gxi ∂f
A

∂xi + gAi ∂φ∂xi + gij ∂φ∂xi
∂fA

∂xj . (1.10)

Suppose that for some ` ≥ 0 we have

gxx − 1 = o(x`), gxA = o(x`−1) . (1.11)

It follows from (1.6) that (1.11) holds with ` = 0. By Lemma 3.1 there exists
fA ∈ Ck+1+λ(Ō) satisfying

∂`+1fA

∂x`+1

∣∣∣
x=0

= −∂
`gxA

∂x`

∣∣∣
x=0

,

while all the lower order x–derivatives of fA vanish at x = 0. Passing to coordinates
(x, v̄) on a (possibly smaller) cylindrical neighbourhood O, and dropping bars, one
finds from (1.9)–(1.10) that (1.10) still holds with, moreover

gxA = o(x`), (1.12)

so that for ` = k = 0 the proof is completed. If 0 < ` ≤ k by Lemma 3.1 there
exists φ ∈ Ck+1+λ(Ω̄) such that

∂`+1φ

∂x

∣∣∣
x=0

= −∂
`gxA

∂x

∣∣∣
x=0

,

with all the lower order x–derivatives of φ vanishing at x = 0. Passing to the
coordinates (x̄, v) and dropping the bar on x̄ one finds that (1.11) holds with `
replaced by `+ 1, and the induction step is completed. 2



Bibliography

1. R.A. Adams, Sobolev spaces, Academic Press, New York, 1975.

2. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for the solutions of
elliptic equations satisfying general boundary values, Commun. Pure Appl. Math. 12 (1959),

623–727.

3. L. Andersson, Elliptic systems on manifolds with asymptotically negative curvature, Indiana
Univ. Math. Jour. 42 (1993), 1359–1388.
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