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Abstract

We prove existence of the solutions of the constraint equations satisfying “hy-
perboloidal boundary conditions” using the Choquet—Bruhat—Lichnerowicz— York
conformal method and we analyze in detail their differentiability near the conformal
boundary. We show that generic “hyperboloidal initial data” display asymptotic
behaviour which is not compatible with Penrose’s hypothesis of smoothness of 7.
We also show that a large class of “non—generic” initial data satisfying Penrose
smoothness conditions exists. The results are established by developing a theory
of regularity up—to—boundary for a class of linear and semilinear elliptic systems of
equations uniformly degenerating at the boundary.
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CHAPTER 1

Introduction

A couple of years ago the first semi—global (i.e., global to the future of the initial
data hypersurface) existence theorem in general relativity was proved by Friedrich
[35], for a class of “small” initial data satisfying some asymptotic conditions (cf.
[22] for a different class of “small” data results). An important problem related to
Friedrich’s theorem remained open: it was not clear “how many” initial data sat-
isfying the required “hyperboloidal” asymptotic conditions existed. The classes of
metrics which were known to satisfy the appropriate asymptotic conditions (cf. e.g.
[12] for a review of previous work on this subject), namely the boost-rotation sym-
metric space-times and the Robinson-Trautman space-times (cf. also [67]) were of
a rather special kind, and semi—global existence results have been proved for these
space—times by different methods [13, 23]. More recently, a new class of space—
times satisfying the hyperboloidal asymptotic conditions has been constructed by
Friedrich [34], using a clever trick of “exchanging i, with i*”, it is, however, still
unclear how large a class of metrics can be obtained in this way, especially since
the space—times constructed in [34] are analytic.

In [6] in collaboration with H. Friedrich we have constructed a large class of
“hyperboloidal” initial data using the conformal Choquet—Bruhat—Lichnerowicz
—York method under the assumption of smooth background fields and of pure-
trace extrinsic curvature of the initial data hypersurface. In this work we gener-
alize the results of [6] in two directions: We construct solutions of the constraint
equations with an extrinsic curvature tensor which is not pure—trace. Moreover
only a finite degree of differentiability of the “background fields” is assumed. We
analyze exhaustively the asymptotic regularity of the fields thus constructed in the
“asymptotically hyperboloidal” setting. We show that for generic “backgrounds”
the Cauchy data constructed by the conformal method starting from a “conformally
smoothly compact” Riemannian manifold will not possess the asymptotic regularity
compatible with Penrose’s smoothness requirements for J. On the other hand, we
also show that there exists a large class of non—generic “backgrounds” for which
the solutions will display the required regularity.

We shall analyze the asymptotic behaviour of the solutions of the constraint
equations under various differentiability conditions on the “background” metric on
the conformally compactified manifold. We wish to stress that the issue of the
differentiability hypotheses is not an academic one, because “physical” fields are
obtained by an infinite stretching of the “unphysical” ones and thus imposing too
strong differentiability conditions at the conformal boundary may result in a set—up
inadequate for describing sufficiently general physical situations; some indications
that it might be unrealistic to expect smoothness at the conformal boundary in
generic situations may be found in [22, 21, 70, 26] (cf. e.g. [27] for a review of
previous results on this subject). To obtain a real understanding of the behaviour
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4 1. INTRODUCTION

of the gravitational field at null infinity it clearly is necessary to establish what
asymptotic conditions are appropriate from a physical point of view. One might
try to put forward various criteria which might be considered as physically desirable:

((i)) existence of a local in time evolution of the data,

)) existence of a notion of total energy

)) and finiteness thereof,

v)) existence of a notion of angular momentum

)) and finiteness thereof,

)) existence of a development (M, v) of the initial data set which admits a
J (incomplete, half-complete (i.e. complete in one time—direction only)
or complete ?) of some differentiability class (C°(*M), C**t*(* M),
C3(*M), Hs(*M N3M), C=(*M) ?)

((vii)) existence of a development of the data up to i,

((viii)) one might wish to add the requirement that the function spaces con-
sidered include those data sets which arise by evolution from generic
initial data which are asymptotically flat at spatial infinity, and finally

((ix)) one might ask for various mixtures of the above.

C8(®M) @ C®(®M) differentiability of (g, K) after compactification together with
the vanishing of “shear of the conformal boundary” guarantee that most of the
requirements (i)—(vii) are satisfied [5]. Recall that Friedrich’s theorem, as applied in
[5], guarantees, loosely speaking, a) an incomplete 7 for general C8(3M) @ C®(3M)
data as above, and b) a half-complete J for those such data which are close enough
to the Minkowski data in C®(3M) @ C%(3M) norm. Of course, one has the known
angular momentum ambiguities in the BMS group. In any case, point (viii) is not
known to hold. We would like to emphasize that it is not known what degree of
differentiability up to the conformal boundary is a necessary condition' for any of
criteria (ii)—(viii) to hold in generic situations. Let us note that given initial data
(3M,g,K) (satisfying the, say vacuum, constraint equations) with (g, K) locally
in H,®M) ® Hy_1(®M), k > 5/2, there exists a vacuum developement (M, )
regardless of any asymptotic behaviour of the fields (this follows from the results
of [48] by causality arguments as presented, e.g., in [43]). Moreover requirements
of maximality and global hyperbolicity render (*M,~) unique, at least when k is
large enough®. It follows that perhaps the most fundamental criterion (i) above
imposes no restrictions on the asymptotics at the conformal boundary. For this
reason we have found it of interest to construct Cauchy data for which there exists
a conformal compactification in some sense, under conditions which arise naturally
from the mathematical analysis of the problem. We are planning to investigate the
problem of weakest possible hypotheses on the asymptotic behaviour of (g, K) for
criteria (ii)—(vi) in the future.

It should be emphasized that we construct initial data sets which admit confor-
mal compactifications of various degree of differentiability, leaving aside the problem
of compactifiability of the Cauchy developments thereof (criterion (vi) above). Un-
der the condition that the “background fields” used to construct the Cauchy data

1This should be contrasted with some of the results concerning space—times asymptotically
flat at spacelike infinity, where e.g. sharp results are known for the well-posedness of the notion
of energy—momentum, etc.

2¢f. [17] in the smooth case, and [43] for a reasonably complete proof for k > 4; for k > 5/2
this has been claimed essentially without proof in [20].
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are in, say, C>°(3M) we show that the resulting Cauchy data set is generically in
C*tA(BM), X € (0,1), but not in C3(*M). However, we also show that there ex-
ists a “big” (infinite-dimensional) subset of non—generic smooth background fields
such that the resulting Cauchy data are smoothly compactifiable. It follows from
the Penrose’s vanishing Weyl curvature theorem [64] that only a small subset (still
infinite dimensional) of the above smoothly compactifiable Cauchy data will give
rise to a space—time with a smooth J (¢f. [6] for some results concerning this prob-
lem in the pure trace extrinsic curvature case, and [5] in the general case). One
can envisage the possibility that the existence of any kind of compactification of
the space-time necessarily leads one to, say, C*(*M) compactifiable hyperboloidal
initial data sets only with some k£ > 3, though this seems rather unlikely to the
authors.

To deal with the problem of regularity at the conformal boundary we had to
introduce a large number of function spaces, probably more than seems reasonable
at first sight: we wish to argue that this is not the case. As usual in PDE problems
the appropriate function spaces are Holder— and Sobolev— type spaces: to capture
decay of the solutions one has to consider weighted versions of those. The motiva-
tion for considering various Sobolev-type weighted spaces, as e.g. W}, is their
appropriateness for studying the evolution of the initial data, a problem which we
plan to consider in the future. On the other hand Holder—type weighted spaces
x%Cl4 are intuitively more transparent, and the results in these spaces are easier
to understand for non—experts; these spaces also seem to be somewhat better suited
for proving results which can be used to draw conclusions about the interesting case
of a smooth—up—-to—boundary background — this is especially apparent in the case
of the vector constraint equation. Cpy (# *Crya!) and W' (# z*W}!) arise as
spaces on which the operators we consider are isomorphisms, for appropriate ranges
of the exponents «. It turns out that for some critical values p4 of the exponent
« the solutions of the equations we consider “pick up” log terms, even though the
source term did not have any. Since in the non-linear problem we need to iterate
the results of the linear theory, we are forced to consider equations where the log
weighted terms appear as sources: this leads us to introduce the spaces C’,?+  and

W B2 of functions weighted by a factor %|logx|®. The “conormal-type” spaces
2*Clryalm appear naturally when investigating in more detail the behaviour of the
solutions near the boundary. Finally the spaces AP"8 of “polyhomogeneous” func-
tions are the spaces to which solutions of the equations considered here belong, in
the case of smooth coefficients and smooth sources.

This paper is organized as follows: in Section 1 we briefly introduce the “hyper-
boloidal initial data problem”; for the sake of the reader interested mainly in the
C™ case we state in detail our main existence and regularity theorems under the
hypothesis of a smooth background; results under various different differentiability
hypotheses are stated in detail and proved in chapters 6 and 7. In Section 2 we
shortly mention some generalizations of our results from the vacuum case to the
case of matter fields. In Chapter 3 we establish our notations, describe the various
function spaces, and prove or review some function—analytic results. Lemma 3.1
and Corollary 3.2 proved in Section 3 turn out to be very useful in our applications;
we believe that these results are new.

In Chapter 4 various results concerning the regularity near the boundary are
proved for a class of “edge-type” (cf. [58]) linear operators. More precisely, we
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consider elliptic systems of equations, with the ellipticity constants degenerating
in a uniform way near the boundary, cf. eqs. (1.3)—(1.4). The results of that
chapter generalize similar results of Mazzeo [58] because we do not need to assume
smoothness of the “background” metric; the methods seem also to be rather simpler
than those of ref. [58] (note, however, that the theory of [58] applies to more general
operators and addresses more issues than what we do here). The main results there
are Theorems 2.6, 2.9, 2.10 and 2.11. Those theorems are stated in a somewhat
abstract form, but we show that their hypotheses are satisfied in the applications
we have in mind. More precisely, Theorems 2.6, 2.9 and 2.10 are used in Chapter
7 to prove (a form of) classical regularity at the boundary of solutions to a class
of scalar equations, c¢f. Corollary 2.3. Theorem 2.11 is used in Section 3 to prove
(a form of) classical regularity at the boundary for the solutions of the equation
considered there, ¢f. Theorem 3.11.

In Chapter 1 we prove polyhomogeneity of solutions of some fully non—linear
elliptic equations, under a rather heavy set of hypotheses; these hypotheses are how-
ever satisfied for our (semi-linear) problem at hand, ¢f. Theorem 4.1 in Chapter 7.
In Chapter 6 we construct classes of solutions of the vector constraint equation un-
der various differentiability and decay conditions. We use two different approaches
to do that; these approaches give the same space of solutions of the vector con-
straint equation in the polyhomogeneous or smooth case. We do not know whether
or not this is true in the finite differentiability case, but we suspect that this is not
the case. In Section 2 the problem is formulated in terms of an equation which
does not degenerate at the boundary. The main results there are Theorems 2.7, 2.8
and 2.10. In Section 3 the problem is formulated in terms of an equation uniformly
degenerating at the conformal boundary, of the type considered in Chapter 4. The
main results there are Theorems 3.8, 3.9, 3.10 and 3.11.

In Chapter 7 solutions of the scalar constraint equation are constructed and
their asymptotic properties are established. More precisely, in Corollary 2.3 we
verify that the hypotheses made in the regularity theory developed in Chapter 4 are
satisfied for Laplace—type scalar equations uniformly degenerating at the boundary.
In Proposition 3.1 we prove existence of solutions to a class of semilinear equations
uniformly degenerating at the boundary. Existence of solutions of the Lichnerowicz
equation, Theorem 3.2, is a corollary of this result. As already mentioned above,
in Theorem 4.1 we apply the results of Chapter 1 to prove polyhomogeneity of
solutions to a class of semi—linear equations; the Lichnerowicz equation is again a
special case of the equations considered in Theorem 4.1 (¢f. Corollary 4.2). The
finite differentiability counterpart of Theorem 4.1 is Theorem 4.5, which is perhaps
the main result of this paper. Theorem 4.7 is a specialization of Theorem 4.5 to the
case of the Lichnerowicz equation. In Appendix A we prove that log terms arise
generically in the solutions of the constraint equations constructed by our method.
The main results there are Theorems 2.2 and 2.3. Finally, in Appendix B we show
how to construct coordinate systems near the boundary 0M of M which, for many
purposes, are as useful as Gauss coordinates, and in which no differentiability of the
metric is lost®. This result is a rather straightforward application of the extension
results proved in Section 3. Due to the large number of function spaces involved,

3Recall that one loses two degrees of differentiability of the metric when going to Gauss
coordinates.
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for the convenience of the reader we have included an index (both for terminology
and for notation) at the end of the paper.

There is a non—empty intersection between some of our results and those of refs.
[42, 57, 58, 59, 60], some similar methods have been used in [42]. Some of the
arguments we use are standard for this type of problems: we believe, however, that
the overall approach? is new. Our methods involve only elementary techniques —
scaling, commutation, difference quotients, and an analysis of properties of solutions
of an ODE (with parameters). A key for a relatively simple proof of boundary
regularity is an extension technique for extending finitely differentiable functions on
the boundary to locally smooth functions defined on the whole manifold, ¢f. Section
3. The method is somewhat reminiscent of that used by Hérmander [45, Vol. III,
Appendix B] in a Sobolev spaces setting. It must however be admitted that the
proofs of our main results are somewhat complicated: the intricacies arise mainly
from the finite differentiability hypotheses, and from rather general hypotheses on
a, ag, pt (¢f. Chapter 4 for details). The proofs can be considerably simplified if
one assumes smoothness of coefficients and sources (k = oo; ¢f. e.g. [6]).

In the case when the conformal background metric is smooth, a special case of
our main results — the boundary regularity of solutions of the Yamabe equation
— has been independently established by R. Mazzeo [59] using quite different
techniques®. See also [32, 62] for some related results; cf. [54] for a survey of
the Yamabe problem on compact manifolds and cf. [65] and references therein for
some results about the Yamabe problem with non—constant prescribed curvature.

ACKNOWLEDGEMENTS: P.T.C. is grateful to N. Trudinger and to the members
of the Centre for Mathematics and its Applications of the Australian National
University for their friendly hospitality during a significant part of work on this
paper. Useful discussions with J. Jezierski, G. Lysik, R. Mazzeo and B. Ziemian
are acknowledged. We are grateful to J. Lee for making some of his work [52]
available to us prior to publication, and to Jiseong Park for useful comments about
previous versions of this paper.

40Once most of this paper was written we have been informed that some of our arguments
are somewhat similar to those of [53]. It should, however, be stressed that most of the work in
this paper is done to handle the finite differentiability hypotheses, while in [53] smoothness of the
coefficients of the equations is assumed.

51t should be pointed out, however, that the work in [59] is done using stronger a—priori
assumptions, c¢f. [32] for a discussion.






CHAPTER 2

The hyperboloidal initial value problem.

1. Conformal compactifications and Cauchy data

In this section we will recall the basic notions of the conformal framework
introduced by Penrose [64] to describe the behaviour of physical fields at null
infinity.

By a spacetime, we mean a connected C'*° 4-dimensional manifold endowed
with a Lorentzian metric. Given a “physical” space-time (M, %) one associates to
it a smooth “unphysical space-time” (M, ~y) and a smooth function © on M, such
that M is a subset of M and

Q‘M > 0, Yuv At = Q2’A}’ul/ y (1'1)
Q’BM —0, (1.2)
dQ(p) #0 for pedM, (1.3)

where OM is the topological boundary of M in M. It is common usage in general
relativity to use the symbol J for 8/\;1, and we shall sometimes do so.

We will use the convention that geometric objects in the physical spacetime M
defined w.r.t. the metric 4 are decorated with a “*”, for example R denotes the
scalar curvature defined w.r.t. the connection V and the metric 4.

For simplicity, we will only consider the case when (M, %) is vacuum, i.e. le =
0. In general, this assumption may be replaced by fall-off conditions on the matter
fields. The hypothesis of smoothness of (M,~, Q) and the assumption that (M, )
is vacuum imposes severe restrictions on the geometry of (M,~, Q). If one defines

(cf. [64])
P, = % (Rpuw — % Ryuw) (1.4)
with an analogous definition for the quantities defined w.r.t. (/\}l,’y), one has

0=Pu =P+ &V, V, Q= 2,V QV,Q (1.5)

where V, is the covariant derivative of the metric vy, . Throughout this paper the
following conventions on curvature are used:

vaVﬁX’y — VﬁVaX7 = R’Y,u,a,@X’u )
Rag=R'ays, R=R,.

9



10 2. THE HYPERBOLOIDAL INITIAL VALUE PROBLEM.

Note that the signs in (1.5) are opposite to those of ref. [64] because of different
curvature conventions used. Equations (1.2) and (1.5) imply

vmvm\m —0, (1.6)

(VuVy Q= 1V Va Q)

ot =0 (1.7)

Let M be a spacelike hypersurface with boundary M in (M, ~y) and assume that
M C M and OM C OM. Then we may write M = M U OM so that M is the
topological closure of M in M. Let us stress that M is a spacelike hypersurface
in physical space-time, and this is the only exception to our rule that physically
relevant objects are denoted with a hat. Alternatively, we have M = M, but we
never refer to M, only to M.

Let g;;, K;j, respectively g;;, K;;, be the induced metric and extrinsic curvature
of M in (M,7), respectively in (M,4). If we denote by L¥ and L the traceless
part of K = gikgit Ky, K7 = gik it Ky,

LV =K - Kgi, K=g¢ik;,
B9 =KL Rgi, R=gik,, (13)
one finds
L =307, |L|;=Ql|L|,,
K=K —-3n"Q,, (1.9)

where n® is the unit normal to M for the metric v, and | - |5, denotes the tensor
norm in a Riemannian metric h. Since n® is timelike and, by (1.6), VQ(p) is null
for p € OM we have

K 20, (1.10)

=-3n"Q,
lom

oM
because the scalar product of two non—vanishing non-spacelike vectors cannot
change sign. From (1.2) we also have

gij

2 A
M:Q 9ij »

and since V§ is null non—vanishing at M the equations (1.9)—(1.10) imply

N 2
DiQDiQ’ - <K>
oM 3

where D; is the Riemannian connection of the metric g;;. To summarize, necessary

>0, (1.11)

oM

conditions for an initial data set (M, gij,f( ) to arise from an “extended initial
data set (M, g;;, K") intersecting a smooth J” are
C1. There exists a Riemannian manifold (M, g) with smooth boundary 0 M
and compact closure M = M UM and a Riemannian metric g on M
with g € C*(M) for some k > 2 (¢f. Chapter 3 for precise definitions
of function spaces). Moreover there exists a function Q € C*¥(M) such
that

gij = 0 §ij , (1.12)

Q = DQ . 1.1
=0 e[ >0 (113)
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C2. The symmetric tensor field K% satisfies, for some K € C*~1(M) and
Lii € C*1(11),
K =300+ 1Kg, K =g;KV, (1.14)

K is nowhere vanishing . (1.15)
oM

The above conditions are necessary but far from sufficient, cf. [5, 4] for a detailed
discussion. If there existed “a lot” of space-times satisfying the Penrose conformal
conditions, there should exist “a lot” of initial data satisfying C1-C2. It is there-
fore natural to ask the question, can one construct such data sets? This involves
constructing solutions of the scalar constraint equation,

R+K*-K;K9=0, (1.16)
where R denotes the Ricci scalar of the metric g, and the vector constraint equation,
Di(KV — K §7) =0, (1.17)

where D is the Riemannian connection of the metric g, under appropriate as-
ymptotic conditions. No general method of producing solutions of (1.16)—(1.17)
is known, unless one assumes

C3. DK =0 (1.18)

(¢f., however, [18, 50, 28, 14] for some results). Under (1.18) the scalar and
the vector constraint equations decouple, and the well known Choquet—Bruhat —
Lichnerowicz — York conformal procedure [20] allows one to construct solutions of
(1.16)—(1.17). An initial data set satisfying C1-C3 will be called a C* hyperboloidal
initial data set (smooth if k = 00), while conditions C1- C2 will be called Penrose’s
C* conditions. Without loss of generality we may normalize K so that

K=3, (1.19)

and (1.16)—(1.17) can be rewritten as
R+6=1Ly L7 (1.20)
D;L7 =0. (1.21)

To construct solutions of (1.20)—(1.21) one can proceed as follows: fix a Rie-
mannian manifold (M, ¢g) with smooth boundary M and compact closure, and let
x be any defining function for M (by definition,

x =0 dz >0
oM 9 | |9 OM ’
and z(p) =0=p € IM), set

Gij =2"%gij.
Given a smooth traceless symmetric tensor field B on M satisfying

D;(BY) =0, (1.22)
where D is the Riemannian connection of the metric g, it is not too difficult to
check that the fields

Gij = ¢ Gij ,
L = =10 Bis
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will satisfy (1.20)—(1.21) if
8AG — Rp+ N~ " —64° =0, (1.23)
where R o
A= B2 = §ij ue BFBI*
and where A = D'D; is the Laplacian of the metric g;;. If ¢ and B are smooth up
to boundary and if moreover it holds that

¢‘8M -1, (1.24)

A =0, 1.25
ot (1.25)
then (M, g, K7) will satisfy C1-C3 (with k = o0).

Note that (1.25) forces the coordinate components of B to vanish to third
order at dM, in coordinates regular near OM. It is therefore natural to introduce
a new tensor field BY defined as

BY =z 3B | (1.26)

It turns out that the condition that ¢ and B be smooth up to boundary leads to
non-trivial restrictions. One of the main results of this paper is the following (cf.
Corollary 4.2, Chapter 7 and Theorem 2.3 of Appendix A; c¢f. also [5] for some
related results):

THEOREM 1.1. For any smooth (M, g;;,x, BY) as above there exists a unique
solution of (1.23)—(1.24). Further,

((i)) For given M and x there exists an open dense set (in the C>°(M)
topology) of (g;j, B)’s for which the function ¢~2 can be extended
to a C? function from M to M, but not to a C* function on M (the
third derivatives of any extension of ¢ will blow up logarithmically
as one approaches dM); in particular for generic (in the above sense)
triples (gij, BY) the initial data set (§;j, K*) will display asymptotic
behaviour incompatible with Penrose’s C® conditions.

((ii)) There exists a “large set” of non-generic (g;;, BY) for which Q = ¢ 2z
satisfies Q € C>°(M).

It should be emphasized that in Theorem 1.1 no hypotheses on the topology of
M, or OM are made, thus the resulting space-time may have a conformal boundary
consisting of several connected components of varying topology (recall that e.g.
some Robinson—Trautman space-times admit a smooth J the “spatial” topology of
which is not a sphere [33, 24]). Let us also note that even considering only those
data sets for which B = 0, or for which B% vanishes on OM to some desired order,
point (i) above will still hold in the sense that for generic g and B’s vanishing to
some prescribed order (or even e.g. identically vanishing) no C? extensions of ¢
from M to M will exist.

To complete the construction of initial data sets one also has to produce solu-
tions of (1.22), the standard approach proceeds as follows: Let A% € C>(M) be
a smooth trace free symmetric tensor field and set A7 = 23A4%. Let X solve the
equation

o -~ 2 ~ .. o~
D;(D'X7 + D' X" — ngng”) =—-D,;A". (1.27)
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Then the tensor field defined by
- e a9 -
BY =AY + D'XJ 4+ DIX" — gpkxkg” (1.28)

will satisfy (1.22).

In Chapter 6 the existence and regularity of solutions to the equation (1.27) is
studied. In fact, in that chapter we present two different methods of constructing
solutions of (1.27). In particular, the following is established:

THEOREM 1.2. Let (M, g) be a smooth Riemannian manifold, with boundary
OM and with compact closure and let z be a smooth defining function of M.
Then, given a tracefree symmetric two-tensor A% € C° (M), there is a unique
solution X* to the equation (1.27) of the form

Xt = 22X} + 2t log(x) X§ |
Xi XieC>®(M).

It should be pointed out that for generic A%, the source term in (1.27) will be
generic and thus the corresponding solution X will have log terms, consequently
B given by (1.26) with B¥ given by (1.28) will be C* but not C? extendible from
M to M. If on the other hand A% vanishes to order two or higher at the boundary,
then no log terms occur in the solution of (1.27), ¢f. Appendix A. This condition
is sufficient but not necessary for non—existence of log terms in X*, cf. e.g. [5] for
details.

In order to obtain initial data which can be used in Friedrich’s stability theo-
rem [35] (¢f. also [19] for a somewhat different approach) further restrictions on
(i Kii ) are needed, among others the assumption that both the tensor field

eap = VoV — %WMVV#VVQ%,@
and the Weyl tensor C“g,s vanish on OM. Here ens and C%g.s are evaluated
formally from the Cauchy data (f]ij,f( iJ) assuming vacuum Einstein equations.
The vanishing at OM of the tensor e,g corresponds to the condition that J is
“shear free”, cf. e.g. [5]. The vanishing of C*g,s on OM implies some further
conditions on both L% and the metric gij- In the case when J is shear free and
L% vanishes on M, it turns out [5] that the Weyl tensor vanishes on M precisely
when the restriction of Q=1 L% to &M is proportional to the induced metric on OM.

Point 1 of Theorem 1.1 thus shows that generic data constructed by the confor-
mal method will not be regular enough to be used in Friedrich’s existence theorems.
In fact the problem here is much more serious than just being one or two degrees of
differentiability away from a threshold, because one of the fields used in Friedrich’s
“conformally regular system” is d%g,s = 27 1C%g,5. Whenever C®g.,5(p) # 0 for
p € OM, the field d® s blows up at OM as 1/x, and is thus not even in L'(M).
It should be stressed that nevertheless point 2 of Theorem 1.1 establishes existence
of a large class of non—trivial data with asymptotic behaviour compatible with the
Penrose-Friedrich conditions.

2. Some remarks on non—vacuum initial data sets

In addition to the vacuum case discussed in Section 1, two matter models have
been studied from the point of view of the “conformal Einstein equations”: The
Einstein — Yang—Mills system has been analyzed in the conformal setting in [36].
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The Einstein — scalar field model, with a massless scalar field “minimally coupled”
to the metric, has been recently studied by P. Hiibner [46, 47]. In those last
references P. Hiibner has generalized! Friedrich’s results concerning existence of
time—developments “with a piece of J”, or with a semi—global 7, to the scalar field
case. In this section we wish to describe shortly how our results on vacuum initial
data generalize to non—vacuum models.

First, it should be noted that the construction given here for the vacuum, zero
cosmological constant case yields immediately initial data for Einstein equations
with a non—vanishing cosmological constant with the appropriate sign. This requires
only a reinterpretation of what the physical initial data are, once the solutions of
the constraint equations, as described in Section 1, have been obtained. (We have,
however, not analyzed in detail the question, under what conditions the initial
data so obtained will satisfy all the conditions needed for the well posedness of the
evolution problem in the conformal setting; cf. [37, Section 5.1] for partial results
concerning this question.)

Next, let us point out that the results of Chapter 6 clearly allow for the in-
troduction of sources in the vector constraint equation. Similarly, the existence
Theorem 3.2 proved in Chapter 7 holds for rather quite a large class of couplings
of the gravitational field with some matter sources (¢f. e.g. [51] for a discussion of
the conformal method for Einsteins equations with matter). In particular, in the
Einstein — Yang—Mills case the scalar constraint equation takes the form

4(n—1)
2

I
Ay — R+ &6 —n(n—1)¢72 =0, (2.1)
i=1

with I = 2,y = 3,7% =7, > 0, n = 3. The method of proof of Theorem 3.2
proves existence of solutions of equation (2.1) satisfying the asymptotic condition
(3.3) when the initial data for the Yang-Mills field are suitably behaved, cf. also
Theorem 3.1. Similarly, the arguments of Corollary 4.2, which asserts polyhomo-
geneity of solutions of the Lichnerowicz equation, carry over immediately to the
Einstein — Yang—Mills case, so that if the initial data for the Yang—Mills fields are
smooth or polyhomogeneous on M, then the corresponding solution of the Lich-
nerowicz equation will be polyhomogeneous, c¢f. Theorem 4.1.

As discussed in the proof of the existence Theorem 3.2, one can always choose
a conformal gauge in which R = —n(n — 1) = —6. Then, as made explicit in the
statement of Proposition 3.1, the existence argument applies to equations of the
form

Agp+ F(y,¢) =0,

with a large class of functions F. In particular the assertions of Theorem 3.2 hold
in the case of a scalar field ¥ minimally coupled to the gravitational field, in the
following sense: For this model, assuming for simplicity that the extrinsic curvature
is pure trace, the Lichnerowicz equation reads

K K

806 + (6 — S1dv[5)0 — (6 — 5(Vov)*)é” = 0, (2:2)
where V1) is the derivative of the scalar field 1 in the direction normal to the initial
hypersurface,  is the gravitational constant and we have assumed that R = —6.

1P, Hiibner [46] has also numerically analyzed the evolution problem at Scri for such a
spherically symmetric model. Some related numerical results have been obtained by R. Gémez
and J. Winicour [41]; ¢f. also M. W. Choptuik [16, 15].
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Suppose that there exists ¢ > 0 such that
6 - §|dw|3 >c, 06— g(vo1/1)2 >c (2.3)

on M, and suppose further that there exist constants C,a > 0 such that
|2 + (Voy)? < Ca®

for z small enough. Then Proposition 3.1 together with the arguments of the proof
of Theorem 3.2 guarantees existence of a solution ¢ of (2.2) satisfying the asymptotic
boundary condition (3.3). (Here any sufficiently small constant can be used as the
constant C_ of Proposition 3.1, and any sufficiently large constant can be used as
the constant Cy of that Proposition.) This, together with the analysis of [63] proves
existence of solutions of the scalar constraint equation with appropriate asymptotic
conditions for a large class of couplings of the scalar field 1 to the gravitational
field, in particular for the conformally invariant coupling. The arguments which we
present in Chapter 7 can be used to infer further regularity properties of ¢. More
precisely, if the initial data for the scalar field decay at M and are smooth (or
polyhomogeneous) on M, then the corresponding solution ¢ of the Lichnerowicz
equation will be polyhomogeneous. Let us also mention that (2.3), which is needed
in our existence proof, is not needed for the regularity argument to go through.






CHAPTER 3

Definitions, Preliminary Results.

1. Function spaces

Let M be a smooth, paracompact, Hausdorff, n-dimensional manifold with
compact smooth boundary dM. We will denote by M = M U OM the closure of
M. Unless otherwise indicated, M is not assumed to be compact. Note that with
these conventions M is open.

Throughout this paper x will denote a defining function for M, i.e. a smooth
(up to boundary) function satisfying x|aM =0,z >0, |dx|g|aM > 0, and the
implication z(p) = 0 = p € M holds. The symbol igys denotes the natural
embedding of OM in M, igas : OM — M.

We can always choose a finite number of coordinate charts

b Oy — R™ T = {y e R" : y! >0}, i=1,...,1,
covering a neighbourhood of OM such that

(1) y' =2

((i1)) ¢:(0;) =10,20) x U;, for SomeUiCRn_17O<m0§1.

((iii)) The transition functions ¢; ' o ¢; are a-independent.

((iv)) For every p € UZ 1 O; such that x(p) < % there exists i(p) such that
the coordinate ball B (p, @) centered at p of radius z(p)/2 is contained
in Oi(p)

The symbol 0f2 will always denote the topological boundary of the set 2: 9Q =

Q\ Q, where (2 is the closure of Q. () will sometimes be used to denote the interior
of Q. We set 90 = 00\ dM. We shall write Q'ccQ if ' c Q.

For 0 < o <xg weset M, ={pe M:0<x(p) <o}, CMy=M\M, ={pe
M : z(p) > o}. We thus have M, = {p € M : z(p) = o}, IM, = M, UOM. For
0 <o < p <o we also define M, , = {p € M : 0 < z(p) < p}. Decreasing x¢ if
necessary we may assume that for 0 < o < z( the sets M, are smooth manifolds.

When referring to coordinates on M, we shall implicitly assume that points
(i)—(iv) above hold; we shall use the letter v to denote the coordinates 2, ... ,y";

vi=yt, A=2,....n
Thus
y=(z,v).

Using the above coordinate system, we shall often identify functions on OM with
functions on M,,, or on M,,, similarly for tensors, etc. If useful in the context,
functions f on M can also be extended to functions on M by assigning to f the
function ¢(z/xo)f(v), where ¢ € C(R) is any function satistying ¢(z) € [0, 1],
¢(z) =1 for x € [0,1/2], supp(¢) C [—1,1], where here and throughout supp(f)

17
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denotes the support of f. Sometimes it is, however, useful to use better behaved
extensions of f to M, ¢f. Lemma 3.1 and Corollary 3.2.
The standard Schwartz multi-index notation is used throughout, thus if o =

n

(a1,...0p), then |a| =" | a; denotes the length of a and
0% =0y =00t Oge = 031903 -+ Oy = 0319y,

where § = (o, ..., o). Further, we will write (z0,)* = z'”“@?.

N denotes the set of natural numbers, N = {1,2,...}, Ny = NU {0}, N* =
NU {oo}, N§° = Ng U {cco}. An integer, without further qualification, is taken to
be a number in Ny. However, sometimes integers are defined as numbers in N. For
this reason when talking about an integer in Ny we shall indicate this explicitly,
whenever the distinction matters and ambiguities are likely to occur.

Let Fi, F5 be two function spaces. f will be said to belong to Fy + F3 if there
exist functions f; € F;, i = 1,2, such that f = f1 + fo.

1.1. (Non—weighted) Holder spaces. Let 2 be an open subset of M. For
k € Ny the spaces C(Q2), Cr+2(£2) are the spaces of k times differentiable functions
on §2; and in the Cj42(£2) case the derivatives of order k satisfy a Holder continuity
condition with exponent A € (0,1]. To emphasize the local character of the spaces
Ci+2(2) we shall sometimes write C}%F, () for Ci4x(€2), whenever confusion is
likely to occur. Following standard notation, (cf. e.g. [1]), for k € Ny the symbol
C*(Q) denotes the space of those functions in Cj(f2) the derivatives of which up
to order k can be extended by continuity to continuous functions on Q; we equip
Ck(Q) with the supremum norm. The spaces Ci(Q), Cr1A(Q) are the spaces of
functions differentiable k-times on €2 and equipped with the supremum norm; and
in the Cx12(Q) case the derivatives of order k satisfy a uniform Holder continuity
condition with exponent A € (0,1]. For A > 0 we have Cj(Q) = C**(Q), where
Ck+2(Q) is defined in the usual way as in e.g. [1]; however Cy(Q) # C*(Q) in
general, because functions in Cy(Q) do not necessarily extend to the boundary of Q
together with all derivatives: In particular Co(2) # C(2), where C(f2) is the usual
space of continuous functions on Q (an example is given by the function sin(1/z)
which is in Cy(M,, ), while it is not in C(M,,)). Our notation in which the differen-
tiability index is put “downstairs” is mainly motivated by the fact that it is natural
to put “upstairs” those indices which correspond to fall-off properties of functions
near M. As shown in the above discussion, this convention on the differentiabil-
ity index also helps to avoid a possible confusion between the spaces Cj(M) and
C*(M). Note also that a function in Cx(£2) or Cy4(€2) is not necessarily bounded
up to the boundary 99, as opposed to a function in Cy(Q) or Cry(9). ék(Q),
Co’k+,\(Q), etc., denotes the space of Ck, Ckix, etc., functions on © which vanish
in a neighbourhood of 9Q2. When A = 1 the space Cj) will always be denoted by
“Crar, A = 17, to avoid possible confusions with the space Ciy1. “Cirir, A = 07
will sometimes be used to denote the space C, similarly for “C,?f v A =07 (the
spaces C,':_ﬁ\ are defined below), etc. We set Cu () = NpCr ().

From the Whitney extension theorem (cf. e.g. [40, Lemma 6.37]) any f €
Cria(M), X € (0,1] can be Ck,y extended across OM; this is however not neces-
sarily so if f € C(M) (A =0).
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1.2. Weighted Hoélder spaces. Let €2 be an open subset of M. For o, 5 € R
and k € Ny we denote by C27(€2) the space of those functions in Cj,(€2) for which
the norm

= —-B .o+
g o) = Wlo e + 5w, (e 2= 57 o)
(,0)€QN My

is finite. For A € (0,1] we denote by C,?fA(Q) the space of those functions in
C?’B(Q) for which the norm

||f||c;:£(g) = ||f||c;:«ﬁ(9) + ||fHCk+)\(Q\MmO/2)
a7 -y
+ sup sup (14 [Inag|)=F gmathkA 1977(y) - /\f(y )
yE‘I’\Y{‘@kﬁQ yleB(y,#)mQ ly — 'l
v #y

is finite. We set O, (©2) = C,‘:f)\ (©2). Although we shall generally avoid such a no-
tation, we shall occasionally write C}', Ci, 5, Ck, Cr, etc., for C (M), O\ (M),
Cr(M), Cry2 (M), when confusion is unlikely to occur. Note that CP (M) # Cy (M),
CRin(M) # Crya(M), and that for o > 0 functions in Cg‘f)\ (M, ) are, together with
their derivatives up to order k, bounded near oM, (i.e. that part of the boundary
of M, which does not coincide with OM).

Let F be a function space, and let p be a function. By pF' we shall denote the
space of functions f such that p~'f € F. If F has a norm, we set

£ llor = llp~" fllF -

We have e.g. (1 + |log z|?)?/? Chy = C’,?‘_f)\ (this is easily seen by scaling a ball
around (z,v) of radius /2 to a ball of radius 1/2).
We shall say that f € x> F if for all i € N, f € 2*F.

1.3. Sobolev spaces. For p € [1,00), LP(,du) denotes the space of u—
measurable functions defined p-almost everywhere, the p-th power of which is in-
tegrable on {2 with the measure dyu. dug will always denote the measure associated
with a Riemannian metric g (in local coordinates, du, = /det g;; dy' ...dy™). The
symbol LP(2) or L? will be used to denote LP(Q,du) when du is the Lebesgue
measure d"y = dr d" ‘v in local coordinates as described at the beginning of this
chapter (or a measure equivalent to it in an L> sense, e.g. du,, where g is a metric
uniformly elliptic in the above coordinates).

Let © be an open subset of M, let g;; be a metric which is uniformly elliptic
in local coordinates near M, let du be a measure on M. For o, 3 € R, p € [1, 00),

k € Ny we define W} (9, g,du) (respectively V?/Z(Q,%d,u)) as the completion of
C (M) (respectively of C (€2)) in the norm

1 cip0 = 3 [ UD"F10)

0<<k

where D is the Riemannian connection of the metric g, and | |; denotes the norm
of a tensor with respect to the metric g. We shall sometimes write W} (Q) for
WF(,g,dp) when dp is uniformly equivalent to the Lebesgue measure in local
coordinates near the boundary, as described at the beginning of this chapter. We
shall say that f € W,f’loc(fl,g, dp) if f € WE (Y, g,dp) for all Q'CCQ. Similarly we
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define W7 (9, 9, du) (respectively V([)/'z’ﬁ;p(ﬁ, g,dp)) as the completion of o o (M)
(respectively of C' »(£2)) in the norm

—a+£ B8 14
i = 22 @0+ a0, a

0<t<k

Note that if the metric g is in Cy (M), then in local coordinates we have

0<hli<k [ do [do (0l 2 1) < O
0

W PP (Mag ,g,dpig)

for some (f-independent) constant C. The space W“’ﬁ;p(Q,g,x*”dug) will some-
times be denoted by W7?((, g), similarly W 0P (), g) = W‘,:’B;p (Q, g,z "duy,),
WP = W% ete. We shall also write L*P for Wg" AP

The inclusion of the factor ™" in the definition of W} P(M, g) has the unfor-
tunate consequence that we have W7 (M, g) = z*T"/2(14|Inz|)? LP (M, d"y) #
(14 |Inz|?) LP(M,d™y) when g is uniformly elliptic in local coordinates near the

boundary. Even though the latter would seem more natural, this is however more
than compensated by the simplicity of the Holder inclusion:

W:’ﬂ;p(My) CC;: i/p(M) , O<k—N/p¢N (1.1)

(this is easily seen by a scaling argument (cf. e.g. the proof of Lemma 1.1) and the
standard Holder embedding, cf. also [3]).

If gij = v 2g;j, then dug = =" du,, so that Wa’ﬁ;p(M g) = Wa’ﬂ’p(M g,dpg).

For g of this form we shall also define H,, *B((), §) as the completion of o oo (M) with
respect to the norm

3 / (1D°X|; (1+lnx|)ﬁ)2dug}é,

XLz = {
0<t<k

where D is the Riemannian covariant derivative operator of the metric §; with
o a,f3 o

HY = HY?, similarly H,, (€, §) is the completion of C () in this norm. Tt is

easy to show that for functions

HYP (M, §) = WP2(M, g)

this will however not be the case for general tensor fields.

1.4. Nonisotropic function spaces. Let {2 be an open subset of M, let
k,m € Np, A € [0,1]. We shall say that f € Ck+,\|m( ), if f € Craa() N
Crotmaa () and if for all 0 < i+ |y| < m we have (20,)" 9] f € Craa(QN My,).
We set

1 lnm@ = v+ D @) 0F fllo,,, @mrs) -
0<i+|y|<m

Note that Crtm+2() C Criapm(Q)s Crrap(2) = Ck+A( )
Let Q be an open subset of M. We define Ck+/\ o) = C’gf/\( ), with the

appropriate norm. For p € (0, 1] we shall say that f € C’,?fA 0+u( )if f € C,ff)\( )
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and if moreover there exists a constant C' such that for 0 < |y| < k and for all

(z,v), (z,v") € AN {[0,z0) X Ui}, [v —2'| >0,i=1,...,I, we have
(@0, (£ ) — Fla0')] < Ca®(1+ [nal)® o — /|1

We define

Iflloe @)

where the sup is taken over (z,v), (x,v") € QN{[0, o) xU;}, [v—2'| > 0,i=1,...,1,
and 0 < |y| < k. f will be said to belong to C’,‘:f;\’m+“((2) if f e ;j‘f)\’OJm(Q)

and if for 0 < |y| < m we have J) f € C’max 0.k ||+, 01u (8N M,). Note that

if m < k this is equivalent to the condition that for 0 < i + |y| < m we have

(28,)'0] f € C;?’_ﬁﬂ_i_,_/\)o_*_u(fl N M,,). We set

29,)7(f(x,v) = f(x,0))|

o= o[

7

Ca sl
—HfHC,jffA(Q)JrSUPI (14 |Inx|) ﬁ’

= Y o
I lezs e =W lezs @+ 20 100 lleas L @nan,)
0<|y[<m
and we define Cf,, .4 () = C’,?‘J’FO/\ (1), With the obvious norm.

Although they will not be used any further, we would like to point out that the
following spaces of functions arise rather naturally in the context of the problems
considered here: Let k,m € Ny and A, i € (0, 1] be such that m + u < k+ A. Then

fe C}&‘fA( ) will be said to belong to Agf)\’mﬂl (Q) if the norm defined by
||f($, v+ Z) - f(!L'7 U)”C;:J*ﬁ_ﬂym(ﬂﬂMzo)

|2

||f||Aszm+u(Q) = ||fHC£‘_’*_’(;’m(Q) -+ sup

is finite. Here the supremum is taken over z € R"~! such that
(z,v), (z, v+ 2) € $;(2NO;), |z| > 0.

[Strictly speaking, f(z,v+2)— f(z,v) is not a function on M, so that the expression
If(z, 0+ 2) — f(x, 1))||C;j,+ﬁA (@NM.) above has to be understood in the sense of
A .

coordinate patches in the obvious way. Alternatively one could use the diﬁ"erencef
quotients construction of the beginning of Chapter 4.] Indeed, the spaces A7’

k+)\ m+p
possess better interpolation properties than the spaces C,?f Ao While the use
of the latter spaces introduces some complications in some of our arguments, some
other arguments get simpler. Moreover, one can prove an isomorphism theorem in
the Ak_H ety SPaces similar to Theorem 2.1; this is not the case in the Ck—&-/\ S
spaces. There are, however, no essential overall simplifications gained in the proof

by the usage of the Ak+>\ m+p SPaces. Further, the results for ijg\ ety SPaces are
somewhat more general than those in the Agf)\ et SPAces, the latter being proper
subsets of the former. For those reasons we have decided to use the C’,(:+ N
spaces in our constructions.

PROPOSITION 1.1 (Taylor formula). Let f € Ciyx(Mg,), A € (0,1]. There
exist functions f;,r;, 1 =0,... ,k, such that for 0 < /¢ < k we have

4
Z flzl +7re,
=0

fi € Cr_itza(OM),
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V 0<i<l 9irg € 27 Croppn(Myy) Nz A Copp—e(My,) (1.2)
PROOF: We have f;(v) = 4 0% f(0,v), 7o = f(z,v) — f(0,v), and for £ > 1

Ty = / dxl/ dzs .. /“71 dxg(aﬁf(mg,v) — 85]”(0,1})) . (1.3)

For 0 < i < / the property 0iry, € 27" Cyx_gyy is established by straightforward
estimations, 9iry € 2¢71 A Co|i—¢ follows from a change of variables x; — s; given
by x; = xs1...8;

1 1
diry = a'~ / ds .. / oo 51775 s (04 (51 e i, v) 0L F(0,0))]
0 0

O
Let F' be a function space over a set €2, let B be a tensor bundle over 2. A
tensor field X = (X“3), where A, are some multi-indices, |A| = r, |8 = s, will
be said to belong to I'(B) if in local coordinates as described at the beginning of
this chapter the components X Ag of X are in F. Whenever confusion is unlikely
to occur we shall write X € F rather than X € T'p(B). Let us note that for tensor
fields X € C’,’:B or X € W,:’F;p(M, g), k > n/p, where g is a metric uniformly
elliptic in local coordinates near M, the decay index «, 8 always corresponds to
the decay of |X|,; in our notation, ¢f. (1.1). This, in turn, corresponds to the
behaviour of the components of X in the naturally preferred coordinate systems
near OM, as discussed at the beginning of this chapter. It should be pointed out
that this is not true for X € HY(M, §) unless X is a function (¢f. the beginning of
Section 3).

1.5. Polyhomogeneous functions. Let f; be a sequence of functions, f; €
Coo (M), such that for every N € N and for all |a| < N we have

|02 f;| < Cina®t,

for some sequence s; —;_,o 00 and some constants C; n. We shall write

Fa> 0 f
i=0

it for every n,m € N there exists N € N and a constant C(n,m) such that for
0 <z < xpand for all |a] <m

( Zfz)‘<0nm)x

Let I € N§°, let the sequence {(s;, {Vi;}5 o, si € R, N;j € Ny, satisfy

Si+1 > si. [ will be said to be polyhomogeneous, f € A{(S“N"J')}f:m if there exists
a sequence of functions fij; € Coo (M) such that, for 0 < z < min(zo, 3),

z

ij

I oo
2550 35 PN m

=0 75=0 0

We set Alsitizo = U{Nij}A{(sia{Nij})}i:O’ Arbs = Us“].A{Si}f{:O. In what follows we
shall need the following Lemma, the proof of which is a straightforward generaliza-
tion of the proof of Borel’s Lemma (cf. e.g. [45, Volume 1]):

b
Il
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LEMMA 1.2 (Borel Lemma). Let I € N§°, {(ss, {Ni;}329)}i=0, si € R, Nyj €
Ng, with s;41 > s;, suppose that fijk € Cx(OM), let fijn € Coo(M) be any
functions such that (f;;x — ﬁjk)’oijk = 0, for some neighbourhoods O, C U;O; of
OM. (Here the sets O; are as defined at the beginning of this Chapter, and the f;;’s
have been extended to the neighbourhood U;O; of dM by setting 0f;x/0x = 0 in
some coordinate system as considered at the beginning of this Chapter.) There
exists a function f € ng;g,m N APP8 such that (1.4) holds. If N;; = 0,Vi, j, then
f € Cux(M).

2. Some embeddings

PrROPOSITION 2.1. Suppose that Q@ = M, or Q@ = M., 0 < 7 < xg, let f €

.Ta Ck+)\|m(Q).
(1)

0< Bl <m, 0< [Bo| <k ODFP2f € 2™ Crr iy aim—151) () -

(2.1)
((ii)) Let g € a™ Ck1+)\1|m1(Q); then
of €3 Chyyrma(@), (2.2)
where *o = min(x,*;), * = k,m, A, in particular
9 € 2% Crymia(Q) = fg € 297 Cpynim(Q). (2.3)
Suppose that Q = M, or Q= M,, 0< 7 <z, let f € C’,?f/\’m+u(9).
((iif))
o,
0< |y <k (x0y)'f € OkfM+>\,min(m,kf|fy|)+u(ﬂ) : (2.4)
((iv))
a,B
0<|y|<m a)f € CmaX(O,k7|’y|+)\),mf|'y|+;L(Q) . (2.5)
((v) Let g € Cplf3 L, (), then
fg € Cszt-og\lz’f;’rzﬁ-ﬁlw (Q) . (26)

with o = min(x,*;), * = k,m, A, u, in particular

g€z Cppn(Q) = fg € C}?:;;iﬁn(k+>\,m+u)(9) : (2.7)

PRrROOF: All the results here are elementary, let us simply point out that Eq.
(2.1) and (2.5) are a consequence of

[0, 0L] = [0g, (20,)'] =0,

[aia (xax)J] = Zogzgj_l diﬂ a;(xam)z )

with some constants d;;¢. Equation (2.3) follows from the inclusion

i Ok+m+)\(ﬂ) C x™ Ck-‘r)\lm(Q) .
Eq. (2.7) follows from (2.6) and the inclusion

2 Crepa(Q2) C OF s a ().
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ProproSITION 2.2. Let @ = M, or Q@ = M., 0 < 7 < zg. The following
inclusions are continuous

(1) m,A€[0,1], >0,
C’g‘+u70+>\(ﬂ) — Coto (), o = min(a, p, \) . (2.8)
(i) p,Ae€[0,1],a>0,k £,meNy, k—£>0

Cﬁi?n-&-u,k—é-{-)\(M) = N0t Copivolp—e(M), o =min(a, u, A) .
(2.9)
((iil)) j € No
JCj Ck+)\|m+j(Q) — Ck+j+)\|m(Q) . (210)
PROOF:
(2.10):

= 0<i+|y<m+j 0)2'0x7If € Cryn

— 0<ii+|m|<m, 0<iy+|y|<j 0100022202277 f € Chyx
> O§i1+|’71| Sm, 0§22+|’Yz|§] 331$i18;16328i2f60k+)\

= [ € Chijirm

I €27 Cryrnimyy

(2.8): From the inclusion
C8irnoin CCotaoin: 0SM <A, ar<a, (2.11)

it follows that without loss of generality we can suppose f € Cngr/\l,O o with
0 < ap <1, A7 =min(ag, A). Let z <y, we have

|f(3:,v)—f(y,w)| SA—I—B,
A= |f(£E,U) _f(yvv”
B = \f(ym)—f(y,w)I

B is estimated in a straightforward way,
B < Cy* v —w* < Cap“o —w|”.
To estimate A, suppose first that x € (y/2,y), which leads to
A< Cr Mg —yM < Crp™ Mz —y|M .

Let now € [y/2""1,y/2™), n > 1; note that

Y oyl1-L) < <yl1- 2 (2.12)
2n—y on Y-y on+1l |° ’
We have
A = A1+A27
i = e o3
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and from (2.12) it follows that

y O¢1—X1 )\1
A = C(= -
[e% —>\1 >\1
v\ y y
< o2 -2
— <2n> 2n+1 2n

ai
_ o-A ) Y o

f(éyv) —f<2iy+1,u)‘ (2.13)

On the other hand

oo -s(Le)] < &

i=0
n—1 y alf/\l y y )\1
< = = — — 2.14
< 02(2) v (2.14)
27 M0 1

= 1-— o 2.1

Recall that for a; € (0,1] we have
a>b>0 = a* —-b"<(a—b)™ (2.16)

(a simple proof of (2.16) can be given as follows: for 0 < p < land 0 <z <y
consider ¢(z,y) = (y — z)* — y* + z*, we have ¢(z,z) = 0 and for 0 < z < y,
%3 >0, thus ¢ > 0). The inequality (2.16) gives

1 1

1-— < (1—=)™ 2.17
2’)1041 — ( 277,) ) ( )
which together with (2.12) and (2.15) implies
1
A, < <1 T 9ona )yal
Iy 1™
(s
and (2.8) follows. (2.9) is a straightforward consequence of (2.8). O

3. Extensions of functions defined on dM

We shall use the following Lemma concerning extensions of functions defined
on OM (cf. [45, Vol. III, Appendix B] for a similar approach in Sobolev spaces).

LEMMA 3.1 (Extension Lemma:). Let k € Ng, A € [0, 1], consider ¢ € C**(OM).
For all m € Ny there exists a function ¢, € C¥*™MM)NCZ (M) (= thm €
Co¢(M)) satisfying
i 7 0, i<m
0 < . < 87/ m‘ — ) X — )
STtsm zdj oM { w) i =m.
Moreover for all multi-indices a we have

(28y) P € CETM M) N CL (M) (3.1)
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and it also holds that

(20y) W — 1 (20,)* ™ € CTFNM) (3.2)

20y m € CZIN(M) . (3.3)

PROOF: A simple partition of unity argument shows that it is sufficient to
establish the result for M = R""! and 1) — compactly supported. Let ¢ €
C>(R"1) be any compactly supported function satisfying

/ p(v)d" v =1.
R’nfl

Let x € C*°(R) be any function satisfying supp x C (=20, %0), X|[=0/2.20/2] = 1-
Set

BlGe.0) a0 [ o), (3.4)
I, ) = T ox(@) B .0) (35)

From (3.4) one immediately has E[¢] € C, (M), so that (3.5) gives UV €
Chka(M) C Clo¢(M). Changing the integration variable w — z = =% in (3.4)
we have

0<ithl <k OB = [ 920w - e -
mot 3.6

Reverting to the integration variable w in (3.6) one concludes t,, € Ol (M),

and Proposition 2.2 gives ¥, € Chim (M ). To obtain the stronger statement
Y € CFEMHA (M) some more work is needed. Assume that 0 < i + |y| < m; from
what has been said it follows that it is sufficient to consider the case k = 0. From
(3.4)-(3.5) we obtain by direct differentiation

v—w

0< & < 20/2, OO (z,0) = / Ll NN YR P
Rn—1 x (3.7)

for some compactly supported functions y;, € C°°(R"~!). Changing integration
variables (3.7) becomes

L Py (2, 0) = 2] /Xm(z)w(v —xz)d" 2. (3.8)

The property 929)v,, € C°(M) follows from Lebesgue dominated convergence
theorem. If A > 0 the further property 9974, € CO+t*(M) follows from (3.8) by
straightforward estimations. For 0 < x < x0/2 we also have, for all multi-indices
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(@8y)* b (, v) (w) (@0,) {2~ V(=)

= /Rnil{w(w)_1/’(”)+1/J(U)}(x8y)°‘{ m—(n— 1>¢( Yy dr
= [ ) v a0, e e )}d"l

+¢(U) /Rnil(xay)a{l‘m—(n—l)(b(v;)} d" 1w

= [ ) s} aa,) Dy

v

—H/)(v)(may)“ /R7171 xm*(nfl)qﬁ(%)dnilw
- /%Ww) — U(0)}(d,) {2V P(— =)} w

+(v)(20y)" 2™
and (3.2)—(3.3) easily follow. (3.1) is established by a similar simpler calculation.
O
COROLLARY 3.2. Let k € Ny, A € [0,1].
((i)) For 0 < i < k let f; € C*7*A(OM). There exists f € CK*(M) N
C'°¢(M) such that

azf oM = fl .
Moreover for all multi-indices o« we have
(20,)*f € C*TX(M) . (3.9)
((ii)) Let g € Ck¥*+*(M). There exists f € C*A(M )ﬂC’go)k_i_)\(M) such that
f—g¢€ Ck+)\,0+>\( )N C;’iiﬁ(M) . (3.10)

PRrROOF: 1. We shall proceed by induction. Suppose thus that we have proved
the existence of a function f satisfying our claims for 0 < i < ¢ < k. To start the
induction, for £ = —1 set f = 0. For ¢ > —1 define

— a@-‘rl c Ck—€—1+)\ aM )
1/’12+1 T f oM ( )
The induction step is obtained by replacing f with

ft forr —er
where f~[+1, 1;@4,_1 are obtained from fy41 and of 1,11 using Lemma 3.1 with m =
{4+ 1.
2. Let f be obtained from part 1 of this Corollary using the functions f; =
digloar € CF~HA(OM). Now (3.10) is equivalent to

0<ithl<k  801(f —g) € Comd N N CE M ()

Choose some ~ satisfying 0 < |y| < k; since f — ¢ has vanishing Taylor coefficients
at OM the result follows for A > 0 from eq. (1.2) with £ = k — || of Proposition
1.1. If A = 0 the result follows in a similar way from (1.3). O
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Let us recall that Whitney’s extension Lemma is usually proved in a C*+* (M)
context, with A > 0. Corollary 3.2 can be used to prove the equivalent of the
Whitney Lemma for functions in C*(M) when the boundary dM is a sufficiently
differentiable manifold (as is the case here); it also gives a rather elementary proof
of that Lemma in our context.

As an application of the results here, in Appendix B we present a construction
of “almost Gaussian” coordinates near M. The construction leads to coordinates
which for many purposes are as convenient as the “real” ones. Moreover, even!
in the case where finite differentiability of the metric is assumed, the construction
leads to a coordinate system in which the coefficients of the metric tensor are of
the same differentiability class as in the original coordinates.

4. Mapping properties of some integral operators

A significant role in our approach to boundary regularity in Section 2 is played
by the mapping properties of the integral operators

I*(f)(x,v) =z /fﬁ s f(s,v) ds, (4.1)

x € (0,x0], vEIM, acl0x), peR,

zo
) = [ s 0)ds,
0
1
Gazi(-[ng_I(;)ii)a B < g, /lj:GR,
Mt — p—
which arise from fundamental solutions for some ordinary differential equations, cf.
the beginning of Section 2. We have the following results:

LEMMA 4.1. The following maps are continuous:
(1) a<p, AN e€10,1]
Iﬁo : C(?Jﬁ,OHJ(Mwo) - Cgf)\,ow\/(Mwo) , B =01 a<p; (4.2)
G =pB+1ifa=pand B # —1; 8/ > 0 arbitrary if « = p and 8 = —1.
(1) e > p, AN €[0,1]

Igo : C(?—;-ﬁ)\,0+>\’(MIo) - C(l)i.;_)\l’o_i_)\/(Mmo) 5 )\1 =\ for A\ 7& a— W,

(4.3)
and if A = @ — p then Ay is arbitrary in [0, \).
((ii)) o> p, AN €0,1]
I - o own (M) = Coillr g (Ma,) . X =min(\, X) . (4.4)
(iv)) a>p,Ae[0,1],
1" CG YA (My,) — 2 Cora(0M). (4.5)
((v)) p=0,A€[0,1],p+A>0,
1 A f € Copn(Ma,), flop, = 0} = Copn (M), (4.6)

for some N (p, A) € [0,A], N > 0if A > 0.

1Recall that one loses two degrees of differentiability of the coefficients of the metric tensor
when transforming the metric to the exact Gauss coordinate system.
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((vi)) p<0,A€0,1],—p+A>0,
Ig : {f € CO+)\(MIO) ’f|8M = 0} - C0+>\’(M10)7 (47)
for some A (u, \) € [0,A\], N > 0if A > 0.

ProOOF: For A = 0 the proof of (4.2)—(4.4) is a straightforward estimation;
in that case continuity of I}'(f) in v in (4.4) follows from Lebesgue’s dominated
convergence theorem. To establish Holder continuity when A > 0, let us note that

() (@) = ()@ v) = A+ B, a=0,0, (4.8)
A= I (f)(@,v) = T (f) (@', v)
B = IX(f)(@'v) — I4(f)(@',0).
The estimation of B is straightforward, while A can be estimated using e.g. a

scaling argument. To prove (4.6), the not entirely trivial point is to estimate the
term A from (4.8). We have, for 0 < z < y < xg

I (N v) = I, (f) (w,0) = Ay + Ay

mz—@hw%/ s f(s,0) ds
Yy

Ap = ¥ /y sTIHF(s,v) ds. (4.9)

Since f vanishes at 9M, we have |f(z, )| < ||fllc, ., (i1,,) %

0 < p <1, recall that

Suppose first that

yt — ot < (y—ax)* (4.10)

(cf. (2.16)). For u = 0, A; = 0 and the result follows immediately from (4.9). If
0 < p <1, setting \ = min(p, \) we have

A < Cy "+ )y —=

C(x(’}*“ +y ) (y — =
(N + M) (y
Oy ™) (v

m

=Ny — )N

)
)

IN

IN

_ x)f\’
— ).

On the other hand if g > 1 then
Al < Cag™ + 9 ) (v —2*)
< Clapy "+ Mty — =)
< pCly )y —a) My — o)
< 2uC(y— x))‘ .

If A\ — g > 0 the estimation |Ay| < C(y — x)*~* follows from (4.10); if A — pu < 0 we
can without loss of generality assume A — p < 0. If =1 < A — 1 < 0 we have, with
N =min(p — A\ A),

|[A2| < Ca* (:U’\_“ — y’\_“) = Oty (y“_’\ — x“_)‘)
CaMy iy — o) (y—a) AN <Oty (y — o)
C’xé‘_x (y — x)x .

’

IN A
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while in the case A — < —1 the estimation proceeds as follows:
|A2| Cw)\yk—u(yu—k _ xu—)\)

Clp—Nzry My —=)
Clp—Nzty My —2)* <Cu— ANy —z)*.

ININIA

(4.7) is proved by similar methods, (4.5) is straightforward. O

For the purposes of this paper only the information contained in the Lemma
above and in equation (4.14) below will be needed. For completeness, and for future
reference, we wish however to point out the following consequences of Lemma 4.1:

COROLLARY 4.2. Let ¢,k,m € Ny. The following maps are continuous
(1) a<p,\Nel0,1]

Igo : C/z:)é’+ﬁ)\,m+/\’ (Mlo) - C]?J,f)\,er)\/(Mwo) (411)

G =pifa<u =+1ifa=pand 8 # —1; §/ > 0 arbitrary if
a=pand g=-1.
() 0> AN €[0,1]

18 OB i (M) = Cl o (M) (4.12)

o

with some A’ € [0, A}, A > 0if A > 0.
((iil)) « > p, A\, N € [0,1], let ko be any integer such that 0 < ky < k and
ko —m < a—p,

Ig : C?—’&-ﬁ)\,m+)\’ (Mmo) - Ol?ﬁ/\l,m-s-,\/(Mzo) (413)

for some A1 € [0,min(A, N)]; Ay = 0if kg > m, Ay > 0 if AN > 0 and
ko < m.
((iv)) a > p, A, N € [0,1], let ko be any integer such that 0 < k¢ < k and
ko —m < a—p,
IOl (My,) = 29 Cryn (0M) N2 Ch, (OM) . (4.14)
((v)) a < p, A€]0,1] let £y be any integer such that pu —a > £y > 0

I;:JJO : xack-‘r}\hn(MIn) - xacnlin(k,fo)+)\’|m(Mmo) (415)

for some X € [0,A], ' > 0if A > 0.
(V) a>p, Ae(0,1]

Iy 2% Crgajm (M) — 2% Cryxrjn (M) (4.16)
for some A € [0,A], N > 0if A > 0.
((vii))
IF  APhE — APhe (4.17)
((viii)) a>p
If - AP 0 Og (M) — APPE. (4.18)

PrOOF: (4.11)—(4.14) follow by straightforward induction from (4.2)—(4.5).
To prove (4.15), suppose first that k& < £y, choose v, ¢ satisfying 0 < |y| < m,
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0 < |8] <k, set B =0+, define f= APx=ef, thus fe Cr—|5|+x]|4)- Taylor
expanding f up to order £ = k — |6| we have from Proposition 1.1
Flaw) =Y "2 fi(w) + 70, fi € Choimjspa(OM),
i=0
VO<i<t Oirpcat™Copyna=ACy, (4.19)

so that
¢ i 7 L i—ptaf
e (f) = 3 I gy T TAO) ey

i a1 i et
(4.6) and (4.19) imply by induction
0<p<t  OBIL “(7e) € Copn

rTxo

for some A € [0,A], X > 0 if A > 0, which gives OPIX*(f) € Coyx for 0 < p <4,
therefore for 0 < |y| < m we have 914 (f) € 2*Cry . From

(@)1l = I+ Y (20,)Pul f (4.20)
pg=j—1
the result follows for & < £y. The inclusion

k= Lo Craim(Mz,) C Coygrpm(Ma,)
reduces the case k > ¢y to the previous one. (4.16) is proved in a similar way using
(4.7). (4.17) and (4.18) are elementary. O

PROPOSITION 4.3. Let i,k € Ng, A € [0,1]. There exists X € [0,A], ' > 0
unless A = 0, such that the following maps are continuous.

(1)) —k <j € Z, max(p—,pu— +j) < a < py,

Gao : CpianiaMe,) = CRin pa(Ma,) (4.21)
=pifa<pus; =p+1if a=ps and 8 # —1; # > 0 arbitrary
ifa=puy, g=-1.

((11)) Q> by, > [ +J7 ] € NO)
Gao : Ciiinin (M) = iy jpn (M, ) - (4.22)

(i) j =01

Go: O (M) — g (M) (4.23)
((iv)) j=1.2
Go : Cﬁ;lj,\,kw\(Mwo) - CSI;FJHN,HA(M:EO) . (4.24)
((v)) j € No, py +j < e,
Go : Cl?—;-ﬁj—&-)\,k—i—A(Mwo) - Cgfﬂ,\/,kw\(Mxo) : (4.25)

((vi)) p— < a < piy, let £ be any integer such that py — a > £y,

Gy 0 2% Chaim(Ma,) = 3% Crnin(k o)+ 1 |m (M, ) - (4.26)

((viD) &> ps,
Go : $ack+/\|m(Mmo) — SUaCk+)\/|m(MID) . (427)
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((viii))
Go: AlsiYizo 5 APPs 4 =0 2 | (4.28)
provided that sg > p— if a = ¢, and s > py if a = 0.

PrOOF: The results follow from Corollary 4.2 and from

1 1
Coo =y U =80 = g G = A =0,
9 1 Kt .
g G = (e i — 107



CHAPTER 4

Regularity at the boundary: the linear problem.

1. Tangential regularity below the threshold

Throughout this paper the letter C' denotes a constant, the value of which
may change from line to line. We use the summation convention unless specified
otherwise.

We shall consider systems of equations which in the local coordinates as de-
scribed in Chapter 3 can be written in the form

L%ub = ¢, ab=1,...,N, (1.1)
Here
L% = Y a%a(y)(d,)”, (1.2)
|| <m
where we use the notation
(x0y)* = (x02)* (x0,2)*? ... (xOyn )" for a = (ai,...,ap).

Dropping indices we can write

L= Y aa(20,)", (1.3)
laf<m

or briefly
Lu=f.
Let F' be a function space. We shall say that L € OPp' if a%, € F. We set

a=(a), lallr=_ llaalr-
a,b,«
The operator L will be called elliptic on M,, if there exist constants c;,cz > 0 such
that on M, it holds that

g™ < det (D a"pal?) < cal™Y, (1.4)

|a]=m

=)+ (R

The operator L will be called elliptic if it is elliptic on M, and if moreover it
is elliptic in any standard sense in C'M,,; no uniformity conditions on C'M,, are
assumed. In some of the results in our paper, the notion of ellipticity on M, can
be weakened to a suitably weighted (in the sense of (1.2)) version of the definition
of Douglis—Nirenberg [30].

The main results of this chapter — Theorems 2.6, 2.9, 2.10 and 2.11 — establish
some form of “boundary regularity” for solutions of (1.1), under the hypothesis of
the existence of a “regularity interval” for weighted Holder or for weighted Sobolev

33
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spaces, as defined below. Thus the results of this chapter reduce the problem of
boundary behaviour to that of existence of a “regularity interval” (which may be
quite difficult to prove for specific operators). In section 3 we shall prove the exis-
tence of a regularity interval for weighted Sobolev spaces for the “conformal vector
Laplacian” (in fact, of a strong regularity interval), while in Chapter 7 the existence
of a (strong) regularity interval for weighted Holder spaces will be established for
the Laplace operator (the existence of a regularity interval for weighted Sobolev
spaces for the Laplacian follows from Corollary 3.13 of [3] and from Proposition 1.2
below).

Let F&P () be one of the spaces C2F WP or H*? introduced in Chapter
3, where * stands for a regularity index, e.g. * =k, or * = k + A\, m + u, etc. We
shall always be interested in 2 = M or 2 = M,,, with g — as described at the
beginning of Chapter 3; note that if Q = M, with 0 < ¢ < z¢, one can always
replace zo with o to reduce this to the case {2 = M,, — our results and methods
are “stable” under such replacements. We shall say that an interval (a_, ;) C R
is a regularity interval for Fy & (Q) except for § € B C R for an operator L of order
m if the following implication holds, with F'°¢(Q) — space of functions which are
locally in F,,

( Lu=f feFQ), ac(a_,ay), B¢B, )
we Fy= Q)N Ee(Q), €>0
E

(ueFMP(Q)) (1.5)

Usually we shall consider B = (), B = {—1}, or B = R\{0}; in that last case we
shall say that (a_, a4 ) is a regularity interval for F%.

We shall say that an interval (a_, a4 ) is a strong regularity interval for Ff’B(Q),
B ¢ B, if (a_,ay) is a regularity interval for Fg' #(Q) and if moreover there exist
constants 0 < z1(a, ) < xg, C(a, ) such that the following implication holds,

( Lu=f, feF" ), ac(a_,a;), B¢B, )
we Fy Q)N Eee(Q), €>0
E

(Wl rang <0 Irpsang + llruarm) ) (0L0)
(recall that My, », = CM,, N My, ={p € M : 21 < z(p) < x0}). For instance, in
the weighted Holder spaces C5° (M,,) case the inequality (1.6) reads

c,n%l,m)) : (1.7)

In the weighted Sobolev spaces L% (M, , " "du,) case the inequality (1.6) reads

lollg s < O (Il as, +

||uHL“*5?p(Mwo,w_”dp,g) < CS(”fHLO‘*ﬁ”’(MwO7:v_”dug) + |u||Wf,'L(MIITIO,g,d/_Lg)> .

(1.8)
In what follows we shall use difference—quotient arguments, writing expressions of
the type “u(z,v') — u(x,v)”, by which we mean the following construction: we
can always find a covering of 9M by coordinate charts (U;, ®;), i = 1,...,I, with
U; = &;(By~1(36;)), where By~ '(r) is a ball of radius r in R"~! centered at the
origin, such that U; = ®;(By~"(J;)) is also a covering of M, let o; be a function
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|(I>i(Bg_1(26i)) =1, supp ¢; C U;, QS v; < 1. Let A € S(1), where S(r)
is a sphere of radius r in R"™!, for (z,v) € M,, (v € OM) define vector fields X;,
j=1,...,1, as follows

, _J pix(@)A*ox vel;, z(p) <o,
Xj(@,v) = { 0 otherwise,

such that ¢;

where x € Cx(R), x(x) = 1 for 0 < z < 2¢/2, 0 < x(z) < 1, x(0) = 0 for
x > 3xg/4. Set

\I/A,h,j = eXp{h,Xj} 5
where exp{hX;}, h € R, is the one parameter group of diffeomorphisms generated
by X; on Mmo. WA, can be extended to a smooth map from M to M by setting
\IJA’hvj|CM10 = id. Note that

0<z<uzo/2, vel;, |h<§: Uanj(z,v)=(z,v+hA).
(1.9)

In all further considerations we shall always assume that the fields u®, f¢ are
geometric objects, by which we mean that 1) one can define an action Wa 5 ;* f,
WA p;*u, and 2) that the equation (1.1) is geometric in the sense that

Uan (Lu) = Lan;¥an; w=Yan;"f (1.10)
with some operator La p,; of the form (1.2):
LA,h,j = Z aA7h7j7a(x6y)“ .
le|<m

We shall also assume that for 0 < x < /2, |h| < §; and v € U; we have

Ua ;" u(z,v) =u(z,v+hA), (1.11)
aA,hyj,Oé(:CarU) = aa(x,v + hA), \IIA,h,j* f(x,v) = f(:C,’U + hA) ,
(1.12)
and that there exists a constant C' such that for 0 < ¢ <k, |h| < max, §; we have
f - o < o i .
”\I/A,Iw f f‘ Ck,’eﬁ(Mzo) = CHf”ck’eru(Mzo)h 3 (1 13)
”\I/A,h,j* chngl(Mzo) < OHf”C;:fi,g(Mmg) ) (1-14)
185" T = Py < Ol o gar, B (115)
¥ o.Bip < o.Bip .
”\I/AJLJ f”Wk)’f' (Mzy) = CHf”wk’fr (Myzg) (1 16)
laan.ja — aa”cgrf(z\/jmo) < C”a”cg’fw(Mwo)h“ ) (1.17)
laansalloes e,y < Cllalloes ) - (1.18)
Note that (1.11) implies that we have
I
—p K
||u||C;jjrﬁ>\,£+u(M10) S ||u||CI(:Y+B>\,Z(]on) + Z sup h ||\IJA,h}j U uHC;:,’f(M

T 0<h<é;, AeS(1)

(1%5
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Similarly the well known property of difference quotients in Sobolev spaces (cf. e.g.
[40, Lemma 7.24]) also gives

I

lallyesnar, ) < Nullypesr o, + sup AT~ s -
||Wk,£ (M) H Wk,é—l(MmO) 12:; 0<h<&;, AcS(1) J Wk,éfl(l(\?lﬂi%)o)

If w, f are tensor fields and L is an invariant operator, (1.10)—(1.18) are easily seen
to hold (if u is e.g. a covariant tensor field, then Wa j, ;* is the pull-back operation
by WA ,; if u is e.g. a contravariant tensor field, then Wa p ;* is the push—forward
operation by ‘Ilg’lh’ j). In all subsequent arguments involving difference quotients
the reader should assume that we have this construction in mind. We shall say that
L is a geometric operator, or that eq. (1.1) is a geometric equation, whenever the
above “coordinate invariance” hypotheses hold.
The scaling technique, illustrated in the proof of the following Lemma, will be
used throughout:
LEMMA 1.1 (Scaling estimates). ((i)) Let L € OPgLQ(Mm)’ k > 0, be
elliptic on M,,, let g € C2(M,,) be a Riemannian metric on M.
There exists a constant C' such that for all u € WP?(M,,,du,) N
WpIC (M., g,dug), p € (1,00), we have

bz sy < CUE w2t iy g ot g}

((ii)) Let L € OPJ k >0, A € (0,1), be elliptic on M,,. There

fax(Mag)?

BN 0
exists a constant C' such that for all u € CJP(M,,) N C¢(M,,) we
have
lullegs, s orym < C{IEucps anp +Iilgoary f - (122

PROOF: Let L be an elliptic operator of order m on B (1), the coefficients of
which are k times continuously differentiable, where B (s) is a ball in R™ of radius
s centered at the origin. From [2, Theorem 10.3] and the argument of the proof of
Theorem 9.11 in [40] for p € (1,00) one has

(BE(1/2),05,dmy) < C{||‘i/ﬁHWIf(BS‘(1),5¢j,d"y) + HﬂHLp(Bg(l),dny)} :
(1.23)

iy,

(1.21) follows from (1.23) applied to the functions @& = uy defined by

TN e _ . P
ugly) =u(Fy+9)e (Ml + D77, yeBi), §=(50)€ My

by a Whitney cube (cf. e.g. [68, Chapter 6]) decomposition argument. (1.22) is
obtained by applying the interior Schauder estimates [30, Theorem 1].

lillewsmorasparon < CILale, @y + lloyumyay |

to the functions uy. O
The following Proposition (cf. [3, Proposition 2.6]) provides a criterion for I to
be a regularity interval for second order operators:
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PROPOSITION 1.2. Let k € No, A € (0,1), and let z be a defining function for
OM, with zp — as described at the beginning of Chapter 3, recall that 9M, = {p €
M : z(p) = s}, suppose that B C R satisfies 0 ¢ B.

((i)) Let L € OP2, , suppose that for all « € (a_,ay) and 8 ¢ B

€0, (Mag)

there exists 0 < 7 < xg (possibly depending upon a and f) such
that for all ¢ € Cry24x(0M,,) L is an isomorphism between {u €
O a(Myy) ulzy,, =} and CRA(My,). Then L has (a-,ay) as
a regularity interval for C’gf)\ (M), 8¢ B.

((ii)) Let L € OPég(MIO)7 suppose that for all @ € (w_,w;) and 8 & B there
exists 0 < x1 < z¢ (possibly depending upon « and /) such that for all
NS W,f‘jg;p(Mxl,g,x_"dug), L is an isomorphism between {u : u—1 €
WP AWIP (M, g, 2~ "dpy) } and WP (M,,, g, 2~ "djsy). Then
L has (w_,wy) as a regularity interval for W,?’B;p(M,g,x_"d,ug), B¢
B. Moreover if the above holds with & = 0, there exists a constant C
such that for u € W'~ P(M,,, x "du,) N Wi¢(M,,), e > 0 for which
Lu € WP (M,,, 2 "du,), o € (w_,wy), B & B, we have

Pl s < OO 01y + T ),
(recall that M, /2 2, = My, \ My, j2), in particular (w_,w,) is a strong
regularity interval for W (M, g, x~"dpu,), B & B.

REMARK: Let us point out, that if the hypotheses of point (i) above hold with
k = 0, then we certainly have the inequality

(1.25)

||uHcgﬁ(MzO) < CH(|f||cg+vi(Mw0) + [Ju Cvn+A(JV1'z1,zo)) .

This does not lead to a strong regularity interval because of the Holder continuity
exponent A\ in the norm of f above. It should be mentioned that at the price
of some supplementary complications most of our results would go through if in
the definition of a strong regularity interval the inequality (1.7) were replaced by
(1.25). Since, however, (1.7) is sufficient for our purposes (c¢f. Chapter 7) we shall
not consider that possibility.

Proor: (i): Let Lu = f, f € C’,?;_B/\(M), u = O(z*-1¢), decreasing € if
necessary we may assume vy = a_ + € < a. By Lemma 1.1 u € C;Z+2+A(Mxo)~ Set
Y = ulz,, , thus ¢ € Cry242(0M,,). For a € (a_,ay), B ¢ B, L is surjective

z
there exists therefore y € Cl?-’s-%-s-/\(le)’ X|5M11 = 1, such that Lx = f|m, . We
have ulnr, , X € Cl o\ (Mz,), v € (@, ay), by injectivity of L on C}, 5, (M, )
it follows that u|pr, = X, thusu € CoB (M)

k424X

(1): Let ¢ € Coo(M) be any function satisfying 90|le/2 =1, SD’CMSMM =0, set

up = pu, ug = (1 — ¢)u, define Lu = f. We have uy € W(;U’H;p(Mxl,x_"dug) N

Wle(M,,), u; = 0 in M3y, /4,4, , from @{le/z = 1 it follows that Lu1|le/2 =
f|M e and an argument as in the proof of point (i) shows that u; € W7?(M,, . g, z ™ "duyg),
@y

thus u € W;’ﬁ;p(le,g,x’”dpg) and (w_,wy) is a regularity interval. If kK = 0
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then L :W PP AW PP (M,,, g, 2~ "dpg) — WP (M,,, g, "dpg) is a bijection,
and the open mapping theorem shows that there exists a constant C such that for

all w GV?/?’ﬁ;p AW PP(M,,, g,z "duy) we have

Hw”WQQ’ﬁ;p(MIl,g,z*"d,u,g) < C”Lw”Wé"*ﬁ"p(le,:r*”dug) :

This inequality applied to w = uy gives
”ul”Wf’ﬁ;p(Mml,g,ac*"dug) < C(Hf”wé‘ﬂﬁ?P(le7x—ndug) + HUHW{’(MEI/Q,Tl,g,d;Lg))

(it is easily seen that for ¢ > 0 we have WP (M, 4., g, dpy) = WP (M, 4., g, 2 "dpy)
with equivalent norms), and (1.24) immediately follows. O
The main result of this section is the following:

THEOREM 1.3 (Tangential regularity, o € (a_, ay)). ((1)) Let (a—,aq)

be a strong regularity interval for C 8 (M), B8 & B, for a geometric ellip-
tic operator L € OPZ, A€ (0,1), pe0,1],0 <Ll+p<k+A,

k+>\,£+u(M),
let a_ < o < a, suppose that u € C'°¢(M) satisfies

Lu=f, fecCc™ . (M), u=0@x**), >0, B¢&B.

KX L+
Then for all X € (0,1), p' € [0, ) if &> 0, p/ =0 otherwise we have
€ O e Mao) NV ORY oy e (M) (1.26)

Moreover for all X' € (0,1), ¢/ € [0, ) if > 0, u' = 0 otherwise there
exists a constant C' depending only upon «, 8, n=dimM, N (cf. eq.
(1.1)), the ellipticity constants c1, co of eq. (1.4), the constant Cy
of (1.7), the constants in (1.13)—(1.18), ||al|co (m)> A" and ' such

k4N, 0+
that we have

[[ul ,
m—1+4+X l4p

C:jrﬁ (May) + ||u||clj‘+€n+/\,z+#/(MIO) < C(HfHC:fA,ZJru(MZO) + ||u||ck+m+>\(Mil,m(01)27’

Z1 = min(zy, 29/2). If (a_, a4 ) is only a regularity interval for C’Oo‘_ﬁ\ (M),
then (1.26) holds with u/ = p = 0 provided that a— + 1 < o < g and
u= Oz 1) ¢ > 0.

((ii)) Let (w_,w) be a strong regularity interval for WP (M, g,z "dp,),
B ¢ B for a geometric elliptic operator L € OP[ (M) 0< <k, let
k£

w_ <a<wi,p€ (1,00), suppose that u € WE(M, g, du,,) satisfies
Lu=f, fe€ W,S"’f;p(M,g,xfndug), we Wt P(M, g, x "dp,), €>0, B¢B.
Then
u € Wlf‘iﬁ’jg(MIO,g, z " duy) . (1.28)

Moreover there exists a constant C' depending only upon «, 3, n=dimM,
N (cf. eq. (1.1)), the ellipticity constants c1, co of eq. (1.4), the con-
stant Cg of (1.8), the constants in (1.13)~(1.18), [|al|co (ar) and on the

modulus of continuity of (zdy)Yaf, (y), |v| =k, y € M;;O, such that

||UHW§_"_€;LITE(MxO79@7"@“9) < C(”fHW;}F;p(MmO,g,z"d#g) + ||U|W,f+m(M51,wo,g,dug(])1)2é)



1. TANGENTIAL REGULARITY BELOW THE THRESHOLD 39

#1 = min(z1,20/2). If (w_,w, ) is only a regularity interval for W% (M),
then (1.28) holds provided that w_+1 < @ < wy and u € WS‘)‘HH;”(M, g,z "dpyg),
€ > 0.

REMARK: If L € OPZ, and (a_,ay) is only a regularity interval, the restric-
tion @ > a_ + 1 can be relaxed to a > ar_ by commuting the equation satisfied by
u with a pseudodifferential operator [25], we shall however not discuss this here.
PRrROOF: We shall prove point (i), point (ii) is proved in a similar (and simpler)
way. We shall proceed by induction on ¢. Since (a_,ay) is a regularity interval we

have u € C,Sfm 4 by the scaling estimates, thus the result holds for £+ = 0. Let
FeC i WE (0,1, 0< b <k, or f€CH yinyh=00<ly+1<k,

and suppose that u € C’,?‘J’riw)\’eo. If (o, ) is a strong regularity interval suppose
moreover that we have

k+m+X, 20 kX, Lo+n

a < o Moy g '
l|u|| pos (Mag) = C<||f|c B (M) + ||u||Ck+m+/\(lev"30)> (1.30)

Let Y;, i = 1,...,¢1, be any smooth vector fields of the form x(z)Y;*(v) afm
YA € Coo(OM), x € Cx(R), x = 1 in a neighbourhood of 0, y = 0 outside of
[0, 20/2], where ¢1 = {5+ 1 when (a_, ay) is a regularity interval and ¢; = ¢y, when

(a—, a4 ) is a strong regularity interval. We have

Li = ¢, ¢o=f+p, (1.31)
o = Yi...Yu,
7 Vi Yo f €00 ixomn
p = [L,Y1...Yy]u.
If (o, ) is a regularity interval and g = 0, by the inductive hypothesis we
have p € Ci, \ and from @ € Cf 0P, |\, a—1> a_, it follows that @ €
O s, thus u € C’,’:ﬁw/\)@oﬂ and the inductive step is completed. On

the other hand if (a—, a4 ) is a strong regularity interval and p € (0,1] then @ €
o, ~ a,3 a,B > o,

C’k40+m+/\, pE C’,%ZOJFIJW\,1 C Ok7€0+1+/\,0+w therefore ¢ € CkféOJr/\’oﬂi and for

0 < z < g we have , with v/ = v + v”, for some fixed v" (¢f. the beginning of this

chapter for the meaning of u(x,v) — a(x,v’), etc.)

L(m,v)(a(l‘,v) - ﬂ(aj?’l/)) = ¢($a U) )

ool = (Do) = Lo) i) + $lo,0) ~ (a0

IN

B
C<Hf||CZ)’,ﬁfo+u(Mzo) + HaHCgo,eoJru(Mmo)HUHCSJEZO,ZD—HM(MW)) (14 [Inz|”)v —o'|",

and similarly, for higher derivatives,

(Mwo)) lv =",

% < o
||7/’||C,€'_‘ZO(MW) < C’(Hchkjﬁ]W(Mm) + HaHOS 0 (1.32)

,Zo-HL(MT'(J) Hu”cgﬁn

”7/)”0;:7_[104_)\(]\4%0) < C(Hf”c;lfi\[o(MTO) + ||a||cl(€)+/\lo(M“°0)”u|C:—}-[in,-f-,\,zo(Mwo%? 33)
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(¢f. (1.13)—(1.18)). The definition of the strong regularity interval and (1.30) imply

~ 5 / - o I¢] o
e, v) = (e, ) < C(Ifleps, gy + Illoyy,, @) o1+ [nal)’ o v :\))4).

If ¢y < k, p =1, passing to the limit v — v’ one obtains from (1.34)

0vi < C (W lows  arayy + Mlley iy ) @1+ [])?

kX, g0+ i

because u € C}?fmfeo(Mzo) C Oy, (Myy) C C1°°(My,), which gives 9,4 €
C’S’B(Mwo). The scaling estimates applied to the equation (1.31) with ¢; = £y + 1
give 0,0 € C?;%L_ZO_H)\ (M,,), together with the inequality

0l cn ot < CIlegs, o + 1oy i)

therefore u € C,':me‘ 441 (M), and it holds that

Iz, vt < C (Mot 10l
which completes the induction step.

We have thus shown that u € C,?fer)\,Z(MZO), and it remains to show the
tangential Holder continuity of the £y = ¢’th tangential derivatives of u. Set
i(z,v) = a(z,v) —a(z,v +v"), for § = (£,0) € M, /o consider the functions

By(1/2) 3y — dg(y) = a(dy +§) (1 + |log&|) 7,
By(1/2) 3y — y(y) = ¥(dy + §) & (1 +|log2|) ™7,

where Bj(r) is an open ball in R™ of radius r centered at the origin. From (1.32)—
(1.33) we have

" I am
1931, ., g7 < € (1l o) * Mol o )11 (1.35)

Wil ., amms < C(Iloes  ang +lelles ) -

k+X.Lg k+m4X,€o (1 36)

(1.35), (1.34) and the LP interior elliptic estimates (c¢f. (1.23)) give

[[taglwr (Bp(1/4),dny) < C(”'L/}?QHW;’feO(Bg(l/Q),d"y) + gl e 57 (1/2).dmy))

12
<O(Ifllems ., angy +lullezs ) 1071

so that from Sobolev’s embedding one gets, for any A\’ € [0, 1),

—2o+m

s N am
Huy”Ckféwm—lﬂ'(gg(l/‘l)) = C<||f||cljfx,zo+u(M’0) + HUHCZ’JL,%(MIM) "] =

|| o < o o "
||U|‘Ck’—i0+m—l+)\’(Mm0/2) = C(Hf”ckfkﬁgoﬂ(Mzo) + HU”ckfmlO(Mm)NU ‘ =

o < o o - ] -
||“||c,cf;,l+k,jo+u<Mzo) = C(”chk;i,gW(Mmo>+||“Hc,€1:n,lo<M10>+||“”ck+m7m/(Mzo/z,%))
To get control of the k — ¢y + m’th derivatives of 4 some more work is required. By
interpolation (cf. e.g. [44, Theorem A.5]) from (1.35)—(1.36) for any ¢ € (0,1) one
obtains

|170

Wslle, oy on@garmn = CIWslle, _, @amy¥ille,” .. . aram)
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< N "m(l—o)p
<O(Ifllag . gy + Il A=

and elliptic interior Holder estimates give

ktmA, Lo (Mazy

” yHCk £0+m+0>\([5n(1/4)) — (Hwack £0+a>\(3”(1/2)) + H“y”co Bn(l/Q)))
"m(l—o)p
< C(||f||c;+g oty Tllles a0

so that @ € C',C and for all |y| < k+m — £y we have

+m—Lo+oX,(1—o)p’

‘(ma ) ( (2, v)—u(z, ))‘ < C(Hchaﬁ (M, )+||UHC M. 0)) (14| Inz|)? jv—v'|F=x

k4+X,L0+p k+7n+>\ 20(
Since u € C,?+m+)\ 4, it follows that u € Ck_;_’gm+/\ lot > With
) < (J( . + ) :
||u||ck+[:n+a>\ Lo+(1—o)p (M'To) - ||f||ck A (MI ) Hu||ck+m+k £o (MLO) (137)
and (1.27) follows by (1.30). O

Note that the argument of the last part of the proof of Theorem 1.3 proves the
following Lemma, which shall be needed later on:

LEMMA 1.4. Let L € OP O pep (Mag)

(0,1), p € (0,1], 0 < £+ p < k + X, suppose that u € CI°(My,) N Cofy (M)
satisfies

be a geometric elliptic operator, A €

Lue Ck-i-/\ i (May) -

Then for all X € (0,1), ¢’ € [0, ) we have

Ne]
u€ CI?+m71+A’,Z+p(M‘TO/2) N Cl?+m+A 041! (Mm0/2) :

Moreover for all A € (0,1), u/ € [0, ) there exists a constant C' depending only
upon n=dimM, N (cf. eq. (1.1)), the ellipticity constants c;, co of eq. (1.4), the

constant Cp of (1.7), the constants in (1.13)—(1.18), ||a\|ckH o (M) N and o
such that we have

o « < o .
lllges it tllens a0 C<||Lu||c o ongHulces o IO)>

2. Boundary regularity for a class of second order systems

Theorem 1.3 gives some more information about the solutions than Lemma 1.1,
however only for exponents a € (a—, ). To be able to cover «’s in the interval
(a—, ), or to obtain more regularity, some other techniques are required, and we
shall from now on restrict our consideration to second order systems?', for which L
can be written in the form

L = Lg+1L, (2.1)
Ly = (2°0?+azd, +b) ® idgw ,
. o 0 o 0 )
- p2qrA Y Y2 ABii A_Y
L= drovA T guAgeB T GuA

92
—|—x3w 5t gpaﬁ +zx, with z¢, zp and zx — o(1), (2.3)

11t should, however, be noted that several of the arguments given here would apply to higher
order systems as well.
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where idg~ is the IV x N identity matrix, and a and b are real constants satisfying

(1-a)?

4

Moreover a®*, a4B, a?, 21, x¢ and xy are N x N matrices the entries of which
are bounded functions of y. Note that one can redefine L by multiplying it by an
appropriate (non—degenerate) matrix from the left (this might perhaps necessitate
a decrease of xy) to obtain ¢» = 0 in M,,. We shall often write Ly, in the form
Loy = 2202 + axd, + b, hoping that no confusion will occur. As will be seen in the
following chapters, (2.1)-(2.3) are sufficient for the applications we have in mind
— the constraint equations of general relativity. All subsequent results are based
on an analysis of the ODE?

—b>0. (2.4)

Lopu = f,
solutions of which are given by
u = Azt + Baht + G (f), (2.5)
1 xo T
Cro(De) = {am [T peas o [Fso s agda
My — H— T 0

assuming that the integrals in (2.6) converge. Here the indicial roots py are given
by
l1—a (1—a)?
= +
M+ 5 1

and we will assume throughout that (2.4) holds. If u = o(z#~), f = O(z%), a > p_,
then A =0. For a > p4 one can replace Gy, (f) in (2.5) by

Golf) = /mriu_{xl” /OI sTITRE F(s) ds — at- /0 SI”f(S)dS} , 2.8)

and it will be convenient to do so.

Let us discuss shortly the relationship between p+ and a weighted Holder space
regularity interval (a_,a4). When ¢ = 0, ¢ = p(z), x = x(x), by consider-
ing v-independent sources and solutions it follows immediately that (a_,a4) C
(—o0, i), and that g ¢ (a—,ay). For the standard Laplacian on hyperbolic
space (which is an operator in the class considered here) it is known that (a_,ay) ¢
(—o0, p—) (in fact (a—,ay) = (u—, s+ ), cf. Section 7), and therefore we shall only
consider the case

—b, (2.7)

p— <o <ag <y

It will be seen that for the equations considered in Section 7 we have a4 = p,
and we expect this to always hold for operators of the form (2.1)-(2.4). In fact
Theorem 2.1 in the next Section shows that one may (in some sense, made precise
there) assume that ay = p4 for sufficiently smooth sources.

Let us emphasize that the reason for considering here the possibility that a_ #
l—, Or oy # py, or both, is not because we expect this to be a real feature of
some operators. Rather, this is motivated by the fact that for some equations it
might be possible to prove the existence of a (perhaps strong) regularity interval

°In the general case the corresponding ODE is usually analyzed by Mellin transform tech-
niques (cf. e.g. [68]); for the special class of equations considered in this paper we have found
it simpler and more elementary to use the fundamental solution representation (2.5). We are
grateful to G. Lysik and B. Ziemian for pointing out the Mellin transform approach.
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(a—, a4 ) which is a proper subset of (pu—, 1), while the known proofs do not allow
one to obtain the full expected range (p—, ) (this is actually what happens in
our analysis of the vector constraint equation in weighted Sobolev spaces, Section
3). We shall nevertheless show that the existence of any strong regularity interval,
or of a regularity interval of length larger than one, is sufficient to conclude some
(perhaps not optimal) classical regularity of solutions at the boundary.

2.1. “Tangential regularity” above the threshold. For a‘s above the
threshold a we have the following equivalent of Theorem 1.3:

THEOREM 2.1 (Tangential regularity, o > «a4). Let (a—,a;) be a strong
regularity interval for C’gﬁ\(M ), B8 ¢ B, for a geometric elliptic operator L €
OPZ, A€ (0,1), pe(0,1],1 < £+ pu<k+ X Suppose that L is of the

kx e (M)

form (2.1)~(2.4) with ¢, ¢, x € C}_1, ,_1,,(M). Suppose that
- <o <ap <pg, ap <a.

Let

Lu=f, feCyl (M), u=0@a""), e>0, B¢B.

If £ > £y, where £y € N is the smallest integer such that ay + €y > min(a, py),
then there exist o € (0,1) and ¢ > 0 such that for ' € [0, ) and € > 0 we have

(1) o <ps

B oL +log—1+5
u € Cl?}‘+2+)\,€7€0+y/ (Mxo) N Ckig+§\7(7go+1+g(ng) . (29)

(i) a=py , B# -1

,B+1 +0o—1+46
u € Clﬁ—tQ—&-A,E—%-&-M (Mz,) 0 CI(:I2+§\,£—ZO+1+J(M$O) . (2.10)

(i) o> py

m oL +log—1+5
w € Crlopnotot (May) N Cro X o pg 140 (Mao) - (2.11)

((iv)) If &« > py and € > ¢4, where £; € N is the smallest integer such that
ag + 41 > «, then

, +01—1+6
u=o(z"")=ue€ C}?+ﬁ2+A,e—€1+,u(Mxo) N CI?IQ+;,€—€1+1+U(MIO) .

(2.12)
The constants o and § depend only upon oy, py, a, p, A, £ and k. Moreover if F'
denotes any of the spaces appearing in egs. (2.9)—(2.12), then there exists a (u and
f independent) constant C' such that

lulle < € (Iflogs,, any + Il goseqapy) - (2.13)

REMARK: If (a_,ay) is a regularity interval for Cgf/\(M ) only, then the
following modifications are needed above: One has to make the supplementary
assumptions that o« + 1 < ay and that u = O(z*-T1+€) for some € > 0; on the
other hand one can also allow & = 0. Then egs. (2.9)—(2.12) hold with y/ = 0 and
without the claim about the appropriate decay of the transverse derivatives of order
{—Vlo+1,0,=Lyor b, ={.

PROOF: In what follows we shall assume that 4 = 0, p’ = 0, etc., if (v—, @) is
not a strong regularity interval. From (2.1) it follows that u satisfies the equation

Layu = f — Lu, (2.14)
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and by Theorem 1.3 for any € > 0 and p’ € [0, ) if > 0, ' = 0 otherwise we have

u € CI?JJrr?_J:A,Hu” thus Lu € C’;fﬁr;’ziHﬂ, N C;:I;LH, (¢f- (2.4)—(2.6)). Solving
the ODE (2.14) and choosing e appropriately we obtain
u = Pzt + Gy (f — Lu) = O(z(1 + |Inz|)?), (2.15)

for some function ¥ (v), with
= o=a,p=0,
ay <a<l4ap, a=py, 0#-1 = o=py,p=p+1,
oy <a<ltay, a>pr = o=py,p=0,
l+ar <a = o=min(us,l14+ay —¢€),p=0.

aor <a<ltop, a<puys

The scaling estimates, Lemma 1.1, imply u € C7f, . Setting 2 = /2 in (2.15)
from Lu € Cy7y . we get Gy (f — Lu)| _ 12 € Ceryw(OM) (cf. (4.14)), which
together with u(zo/2,-) € Cri24x(0M) shows that ¢ € Cyypr(OM). This in turn
shows that we can v-differentiate (2.15): for 0 <i < ¢ —1 let X; = X;*(v) a%\ be

vector fields with X;4 € Coo (OM). (2.15) gives
OSZSE—]. XlXZ’U, = Xleil){EMJr-’-GzO(XlXZ(f—EU))
= O0@7(1+|Inz])?),

(2.16)
(X1 e Xiu) (x,v) — (X1 = -Xiu) (z,0") = O(z° (1 + |Inz|)?|v — v'|*),
(2.17)
this last inequality being uniform in |v — v’|. The equations
LX: - Xu=X; - X, f+[LX1 - Xi]u (2.18)
interior elliptic estimates and a scaling argument yield X --- X;u € CJf, ;.\,

1 <{¢—1and thusu € C’Zf2+>\75_1. If (a—, ay) is a strong regularity interval, then
Lemma 1.4 and eq. (2.17) show that u € C}/5, , , 1, for any p’ € [0, ).

One can now repeat the whole argument ¢y — 1 times, where £; is the smallest
integer such that a4 + ¢y > min(o, u4) (note that at each iteration one loses
one degree of tangential differentiability of u) to obtain u € C,‘;Tf)\ﬁzfzo 4o With
& = min(a, p4 ), provided ¢ > £y. Finally if a > py and u = o(z#+) then eq. (2.15)
holds with G, replaced by Gy and with ¢ = 0. Repeating the argument ¢; — ¢
times more, where ¢; is the smallest integer such that oy + ¢; > «, one obtains
u€ lefzﬂ,z—zlw"

To obtain the claimed decay of the £ — iy + 1 transverse derivatives in the case
of a strong regularity interval, where ig = ¢y or ig = ¢1, note that at the last step
of the iteration above we shall have, for any € > 0 and p' € (0, u),

w e O (M) N OIS g (M) (2.19)

We have the following:
LEMMA 2.2. Under the hypotheses of Theorem 2.1, suppose that

01,p 00,p /
ue Cki2+,\,£+u'(Mwo) N Cki2+)\,271+w(M910> , o1 <og, 0<pu <up,
with

0<z<uxg (14 |Inz))? < Czo(1 4 |Inz|)”.
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Then for all 0 < 0 < 1,0 <t < £+ ' — 6 we have

0oo+(1—0)o1,p
u € Ck+2+A,t (My,) -

PROOF: Set uy(v) = u(x,v), and for 0 < ¢y < t; define t = Otg + (1 — 0)t;. We
have the interpolation inequality (cf. e.g. [44] [Appendix A] or [69, p. 236])

”“xHCt(@M) < C||ua:||%,,0(6M)”uxHé:la(aM) .
Setting tg = £ — 1+ ¢/, t1 = £+ p/ we obtain
Ooo+(1—0)o1,
u € CO,Z(-]"-LL(/—B ) p(Mfo)a
and the result follows from Lemma 1.4. O

Returning to the proof of Theorem 2.1, let 6 be any number smaller than p’
and let 20 = p/ — 0 > 0. Eq. (2.19) and Lemma 2.2 give

Ot++i0—1+§
u € Oyl S ior1to (M) s

with
d=0(a—ig+1—ay+p)—(1—-06).
As € can be chosen arbitrarily small we have § > 0, and the result follows. O
In Proposition 1.2 we have proved that if L is an isomorphism in weighted
Holder spaces “close to the boundary dM” for an interval of weights (a_,ay),
then (a_,a4) is a regularity interval for weighted Hélder spaces. The follow-
ing result shows, that an isomorphism property “close to the boundary OM” in

weighted Sobolev spaces for an interval (w_,wy ) implies that (max(w_, p—)+(n—

1)/p, min(wy + (n — 1)/p, u+)) is a regularity interval for weighted Holder spaces
with tangential regularity:

THEOREM 2.3. Let p € (1,00), and let L € OPZ, ()
k4 L4p

elliptic operator, (n —1)/p < ¢ <k, A € (0,1), u € [0,1]. Suppose that (2.1)—(2.4)
hold with v, ¢, x € 018—1+>\,e—1+/L<M)~ Assume that for all w € (w_,wy) there
exists 0 < 1 < xg (possibly depending upon w) such that

be a geometric

L:W{PnWSP(My,, g, " dpug) — WEP (Mg, , 2™ "dpy)

is an isomorphism, with y_ < w_ < min <w+, Ly — ”le>
((1)) Let u € WE'°°(M) satisfy
Lu=f, fe Cgf/\’”M(M), (2.20)
with @ € (a—, @), where
—1 —1
(a—aa-i-) = (w— + L 7min (,u+,w+ + L)) ) (221)
p p
suppose that either
u=0(z""T), e>0, (2.22)

or

u € W(()U;p(belvxindﬂg) , W>w_. (223)
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Then for all u' € [0, ) if u > 0, p' = 0 otherwise we have

ue C?LBQ+)\,£1+#’(M$1) ) (224)

where (1 € Ny is the largest integer such that ¢, < £ — (n — 1)/p.
Moreover there exists a (u and f independent) constant C' such that

[ull ges

< o ——) .
k+2+/\,£1+u(Mx1) > C(”fHCka,HH(M) + HUHCO(CMml/Q))

(2.25)
((ii)) For any uy € Crir(OM) there exists a solution of (2.20) satisfying
(2.24) such that

u(zy,v) = up(v) . (2.26)
u is unique in the class of solutions satisfying either (2.22) or (2.23).

REMARKS:
((i)) The results proved below are unsatisfactory in two respects: 1) it would
be more natural to assume p_ — (n —1)/p < w_ rather then p_ < w_;
2) u is “less tangentially regular” then f.
((ii)) Let us note that under the hypotheses of Theorem 2.3 we must have

u+f"le ¢ (w_,wy): suppose to the contrary that L :VC[)/"f;pﬂW;;p(Mml,g, dpg) —
Wy (Mg, ,dpg) is an isomorphism for w € (w_,w;) and that py —
”le € (w_,wy). Set p = L(pzt+), where p(z) is a Cxo(R) function
satisfying ¢ = 1 for 0 < & < x1/2, p = 0 for > 321 /4. If L is of the

_n-l,..
form (2.1)—(2.4), then for any 0 < € < 1 we have p € W:; r +€’p, and
if py — "le € (w_,wy) we can choose € so that we = us — ”le +ee€

o . .
w_,wy), therefore there exists u. €W ¥°P N W,'<? such that Lu. =
+ 1 2

n—1
— "= tep

. Now for any € > 0, pzH+ & W2#+ , therefore u. # pxt+.

p’Mml

o —n-1l_ys; —n-1l_ys; .
From @+ EI/VTJr 70 VVZM 7" for all § > 0 it follows that
O pp—"5E—5ip =2t —8ip
0 # ue — pat+ € W, NW, , but L(ue — pzt+) =0,
o 771—176; 771,7176;
which contradicts injectivity of L on W ’1” r ’n W; e p,
when 0 is chosen small enough so that p — "le -6 € (w_,wy). Sim-

ilarly one can show that if e.g. L € OPCQ'H with k large enough,

A(M)
then p_ — ”le cannot be larger than w_.

PrOOF: (i): It follows from Lemma 1.1 that for w € (w_,wy) the map L :
W PNWE, — WP is an isomorphism, and Proposition 1.2 shows that (w_,w,)
is a strong regularity interval. Let ¢ € Coo (M) be any function satisfying gp’ My s =
z
1, <p‘ oMy, = 0, replacing u by u if necessary we may without loss of generality
assume u(z1,v) = 0. It is convenient to structure the proof in several steps:
Step 1: Uniqueness of solutions in weighted Holder spaces: Let

Lu=0, ue CQC”’BI(MII), o >w_~+(n—-1)/p, wu(z1,v)=0.
For all w < oy — (n — 1)/p we have u EI/(ID/L{W NWsP and ifw_ <a; —(n—1)/p
we can choose w so that w € (w_,wy) — u = 0 follows from injectivity of L as an

o . . .
operator from W N Wy to WP,
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Step 2: Existence of a solution in a weighted Sobolev space with some decay
exponent: since f € Cgf)\, for all w < o — (n — 1)/p we have f € WP, thus if
w_ +(n—1)/p < a we can choose w € (w_,wy). Since L as an operator from

o 5 . . o . .
W TP N W to WP is surjective, there exists u €W T N W%, which solves
(2.20).

Step 3: Let u eW P N WP w_ < w < wy, satisfy (2.20). By the scaling

estimates of Lemma 1.1 we have u € W%, and by point (ii) of Theorem 1.3 u is in

) o . 1.
W, 4+ By Step 2 for any w_ < w' < a—(n—1)/p there exists v’ €W 7 " NW,., 7

o 7. ’.
which satisfies (2.20), uniqueness of solutions in W7 ** N W,”’} implies v’ = u, and
therefore for any 6 > 0 we can choose w such that we have « — (n —1)/p — 6 < w,
and w # «a. Similarly we may assume that the exponent w in (2.23) satisfies

w>a—(n—1)/p—19,w#a. Fory=(x,v) € M,, 5 consider the function
~ (5 —w € ~ -~ 3
a(g) =ou(y+57) . GEB),

where Bjj (o) is an open ball in R™ of radius o centred at the origin. From the
interior Ci1 ) and LP elliptic estimates combined with Sobolev’s embedding it is
easily shown that there exists a constant C' such that

Hﬂ||ck+2+>\(86l(1/2)) < C{”Lu”CHA(BS’(l)) + Ha||Lp(33(1)vdﬁ)} )

e o T - T o\ e
Lu(g) = Lu(y+§y>, du(y)=\/detgij(y+§y)dy-

From the straightforward inequality

(2.27)

lallze sy ).da) < Cllullwee (ar,, a-ndug)

for some constant C', combined with (2.27), it follows that u € C},,, .

Step 4: Let us show by induction that:

(i) ue C?+2+A,£(Mw1)-

(ii) Let £, be an integer in [1,£]. If u € C} 5, \(My,) and if OJu = O(“z*”),
0 < |y < 4« (cf Step 6), then u € Cf 5,y ;. (M, ). Here x is either equal to some
number @ (and then “x*”= 2%, or * = o, 3 (and then “z*”= (1 + |Inz|)?). We
also assume that z* > (1 + | Inz|)?.

Indeed, suppose that u € Cj, 5,y ,,- In case (i) this holds for x+ = w and £y =0
by Step 3; in case (ii) this holds by the inductive assumption. Let Xi,...,X; be
any smooth vector fields of the form X4 (v) B?A’ XA(v) € Cx(OM). Let u; =
X1 Xu, fi = X1--- X f. In case (i) for £o+1 < £ and in case (ii) for £y +1 < 4,
we have

Lugyp1 = fror1 +[LX1 Xgga]u € Cply 13+ Changoin-
Note that in case (i) we have u € W%, , (cf. Step 3), so that for £y +1 < £ we have

=y

Uggr1 € W,:}fzg_l; setting gy+1(9) =“ ™ Ugy41 (y + %g}), g € Bp(1) we obtain

e+l e 87 1),00) < Clluee+1llwe s, z=ndpuy) -
Applying now the estimate (2.27) to the function @g,+1 ends the induction.
Step 5: Suppose that v = O(z*-7¢). By the scaling estimates of Lemma 1.1
we have u € C’g_;;_:)\, by existence of a solution as considered in step 4 and by
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uniqueness of solutions in weighted Holder spaces, step 1, it follows that decreasing
€ if necessary we can assume w =a_ +€>w_ > u_, w # a.
Step 6: The functions wu; defined in step 4 satisfy the ODE’s

Lapu; = fi — X1+ X; Lu,
and since u; = O(z%), w > pu_, we have
w; = s 2" + G(fi) — G(X1--- X, Lu), (2.28)
G = G,,, for some functions ¢;(v). Since u € CF o,y (My,) C CP(M,,),

X1 X;Lu € CP4(My,) (cf. (24)-(2.6)), G(X1-+ X, Lu) € CF<(M,,), (cf.
(4.2)-(4.4)), G(fi) € CP%(My,), setting z = x1/2 in (2.28) we obtain v; €

Cy—;(OM), in particular 1; is bounded. We thus have

s Mt = O(x”*) ,
G(f) = O@*(1+|ma|)?),
0<i<l—1 G(Xy -+~ X;Lu) = O(z**1) |
which gives for 0 <i </ -1
a) wH1>a=u; = O0(x*(1+ |Inz])?) (2.29)
b) wHl<a= u =0T (2.30)

From (2.27) we obtain u € C},,, ,, where * = w + 1 or * = o, 3.
Step 7 (and final): We can go through step 4 again to conclude either u €
l(clf?H\,Zfl in case a), or u € C’,“CJJ;"QIJF)\’E?1 in case b). After going through steps

6 and 4 at most k; times, where k; is the smallest integer larger than ”7717 one

obtains u € C’,?‘_fg a4k, i g > 0 the above considerations applied to difference

quotients together with Lemma 1.4 give u € CI(:jrﬁZ+)\,Z7k1+u’ for all 1/ € [0, ). The
inequality (2.25) follows by noting that every step above “comes equipped” with
an appropriate inequality, the details are left to the reader.

(ii): Existence of some solution follows from Step 2 above in a standard way;
uniqueness follows from Steps 1 and 5; regularity follows from point (i) of the
Theorem. O

Combining the results of Theorem 2.3 with the arguments of Theorem 2.1 we
obtain:

THEOREM 2.4. Let p € (1,00), and let 7 be the smallest integer larger than
n—1)/p. Let L € OP2, be a geometric elliptic operator and suppose
c

. k+>\,l+l7+u(M)
that £+ ¢ < k, A € (0,1), p € (0,1], £ > 1. Suppose moreover that (2.1)-(2.4)
hold with v, ¢, x € C? (M), and that for all w € (w_,w,) there exists

E—1+4X0+0—14p
0 < z1 < g (possibly depending upon w) such that

L:w{PnWyP(M,,, g, "dug) — WP (Mg, , 2 "dug)

n—1

is an isomorphism, with y_ < w_ < min (w+,u+ — f) Let u € WE'°°(M)
satisfy

_ o8
Lu=f, feC .. (M), (2.31)
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with a > a4, where

(a_,ay) = (w, + nle , min (u+,w+ + nle)) . (2.32)
Suppose finally that either
u=0(x*"), >0, (2.33)
or
u€ WP (Mg, ,x7"dpg), w>w_. (2.34)

If ¢ > ¢y, where £y is the smallest integer such that a4 + ¢y > min(«, gy ), then
there exist o € (0,1) and 6 > 0 such that for ¢/ € [0,u) egs. (2.9)—(2.12) hold.
The constants o and § depend only upon wy, py, «, p, A, £, (n —1)/p and k.
Moreover the a—priori estimate (2.13) holds with a (u and f independent) constant
C provided that the norm || f]] coB L () there is replaced by || f]| cos

X, L4y (M)

+i+u
2.2. Classical regularity at the boundary. In this section we shall estab-
lish boundary regularity of solutions of the problem

Lu = f, f e z*CHANM) . (2.35)
The following Lemma reduces this problem to that of regularity of solutions of
Lu=f — feC (M)NCIHA (M), =0 o p=1.

LEMMA 2.5. Let k € Ny, A € [0,1], and let an operator L & OPékH(M) satisfy
(2.1)—(2.4). Suppose that

feaxCH M),  a>pu_ .

((i)) Suppose moreover that o+ k < py or that uy —a & Ng. There exists
a function 4 € C (M) Nien, 2@ *C*+HH2 (M) such that

Li— f € Cff o (M) NG (M) (2.36)

ii)) Suppose alternatively that o + &k > and —a € Ny, set k; =
y H4 ey L
fiy — . There exist functions @ € CS (M) Nien, 2~ *C* (M) and
Gijog € C%" (M) Nien, xH+ ~1CF= M1+ (M) such that

L(i + tnog log z) — f € Crfdg (M) N Oyt (M) (2.37)

PROOF: We shall prove point (i) assuming A > 0; point (i) with A = 0 and
point (ii) are proved by a similar argument. Suppose that for some ¢ satisfying
—1 < ¢ <k —1 we have found a function uy € C% such that =%(Lu, — f) is in
Cl4x(M) and has vanishing Taylor expansion at M up to order ¢ (¢f. Proposition
1.1); the result is true for £ = —1 if one sets u_; = 0. Let 2~ *w, be obtained from
Lemma 3.1 with m = ¢+ 1 as an extension of a function ¢, € Cx_s—142(0M) to

be specified below. By egs. (3.1)—(3.2) and (2.1)—(2.3) we have
Lwy — Laywy € CFHHH2 (M)

(note that the second term in eq. (3.2) drops out when at least one of the deriva-
tives there is a v—derivative). By hypothesis it holds that uy — ¢ —1 # « and a
straightforward calculation (cf. e.g. the proof of Theorem 2.8) shows that we can

choose 1, so that the function 7 %Lugyy = 27 “L(ug + wy) is in Cpyx(M) and
vanishes to order £+ 1 at the boundary. The remaining claims follow by properties



50 4. REGULARITY AT THE BOUNDARY: THE LINEAR PROBLEM.

of the extension operator E of Lemma 3.1 (cf. eq. (3.4)), using arguments similar
to those of the proof of Corollary 3.2. O
We are ready now to prove the following:

THEOREM 2.6 (Classical boundary regularity, o € (a—,ay)). Let (a_,a4)
be a strong regularity interval for Cg, , (M ) for a geometric elliptic operator L €
OP(QJ,CM(M)’ A € (0,1), suppose that L is of the form (2.1)—(2.4), and that

Lu= f € 2*Ciyr(M), a€(a_,ay), u= 0@, €>0.

Let £y € Ny be the largest integer such that o + ¢y < ay. Then there exists o > 0
such that
a+k< Q. — uc m?zoxaiick_l'_i_l’_g(Mzo) R (238)
k>0y = wuc ﬂ?zoma_iOgOJriJrﬂk,go (Mxo) . (239)

The constant o depends only upon a4, gy, o, A and k. Moreover when F' de-
notes any of the spaces appearing in egs. (2.38)—(2.39), then the a—priori estimate
(2.13) holds with a (u and f independent) constant C' provided that the norm
[fllges  (ary there is replaced by || f

k+X,t+p

& Chyr (M)

REMARKS: 1. The above results are sharp when o, = uy, except perhaps for
the value of the modulus of Holder continuity which we leave unspecified.

2. For ay < py define o € Ny to be the largest integer such that o +0y < I
The reader will notice that for v < ary the arguments of the proof of Theorem 2.9
can be used to show that the right—hand-side of the implication (2.38) holds for all
k < fy; similarly for k > ¢, the right-hand-side of the implication (2.39) will hold
with ¢y replaced by éo. This is again sharp except for the value of the modulus of
Holder continuity of u.

3. Under the conditions of (2.39) in the special case u —a € Ny one can obtain
some more information about u. This, however, requires different techniques and
will be considered separately in Theorem 2.10 below.

PROOF: Suppose first that o +k < a4, let @ be given by Lemma 2.5, by point
(i) of that Lemma and by interpolation (¢f. the arguments of proof of Lemma 2.2)
there exists 0 < 20 < A such that

~ a+k+20
Lu—1) € Ck:_2;,_02+2a(M)'

By Theorem 1.3 point (i) we have u—a € C?i§f22;o+g (M) C M2z Cryivo (M)
(this last inclusion following from Proposition 2.2), and (2.38) follows. Equa-

tion (2.39) follows from the inclusions ng;;giza(M) C C,‘;‘izeg;goJrza(M) and
Ca+ﬁo+2a

2 b tore (M) C N7 " Cpytiyolk—t,(Mz,) by the same argument. m
To obtain classical regularity at the boundary for a’s beyond the threshold a.
some more work is required. The next Lemma will allow us to reduce the problem
to an analysis of those solutions, the decay rate of which is faster than the one
corresponding to the larger critical exponent. The proof proceeds along the lines
of proof of Lemma 2.5.
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LEMMA 2.7. Under the hypotheses of Lemma 2.5 let ¢ € C*¥**(OM). There
exists ¥ € Njen, x#+ 1 CFHH+A(M) such that

—li4 4 =
rr| =y
“~ k+p k4+pa+X
Ly e Ck+§\,-6+)\(M) NCATT (M)
Arguing as in the proof of Theorem 2.1 one obtains the following:

LEMMA 2.8. Let L € OP2, ,

Ck+>\,k+>\(M)
with non-empty strong regularity interval (a_, ay) for Cf, \ (M). Suppose that L
is of the form (2.1)-(2.4) with ¢, ¢, x € CY_1 s j_14A(M). Let m, £ € Ny and
assume that 8 > pu_ and m < £ < k. If B+m > p, assume further that u = o(a#+).
If

A € (0,1), be a geometric elliptic operator

+m+A +A
Lu=f, fe€ le.t,_;\rjo.l,.)\(M) ; uE le+2+>\,é+/\(M) )
then there exists o > 0 such that

B+m+o
u € Ck+2+cr,lfm+g(MI0) .

We are ready now to prove classical regularity at the boundary above the a4
treshhold in the presence of a regularity interval, or of a strong regularity interval.
To avoid a somewhat tedious and not very enlightning discussion of various cases
we shall only give the proofs when a; = p4. It should be clear from the proofs
below how to generalize the argument to the case oy < py, ¢f. also Remark 1
below.

THEOREM 2.9 (Classical boundary regularity, o > «4). Let (a—,a1) be a
strong regularity interval for C¢, , (M) for a geometric elliptic operator L € OP(Qj

A€ (0,1), k > 1, suppose that L is of the form (2.1)—(2.4), and that

kA (M)’

Lu=f € 2“Crir(M), a>ar =g, u=0(x*"), €>0.
Then there exists o > 0 such that
u e 07,2:013“+7i0k+1'+0(]\7[x0) + ﬁieNOxafiCk_,_i_‘_;\(]\;[xo) . (240)

In particular, if we denote by ¢y € Ny the largest integer such that uy + ¢y < «,
then we have

(1) If py +k <aorif a—py €N (or both)
w € Mg+ ™ Chrpino (M) , (2.41)
() > o
w € Mo " Coypitolp—ty(May) - (2.42)
If moreover u = o(z#+) then it also holds that
u € M 2" ' Cryito(May) + Nieng ™ Chrpipr(Ma,) » (2.43)
and for k > ¢, where / is the smallest integer such that (>a— 14, we also have
u € ﬂfig x>0,

trivo(Ma) (2.44)

The constant ¢ depends only upon ay, p4, a, A and k. Moreover when F' denotes
any of the spaces appearing in eqs. (2.41)—(2.42) or (2.44), then the a—priori esti-
mate (2.13) holds with a (u and f independent) constant C' provided that the norm



52 4. REGULARITY AT THE BOUNDARY: THE LINEAR PROBLEM.

Ilfll s (nr) there is replaced by [ flloo ey (iry- Similarly if Fy, Fo denote any

k4, L4
of the summand spaces in egs. (2.40) and (2.43), we have the a priori estimate

lllriers < € (1 lc,mcy.yim + 1l o)) - (2.45)

REMARKS: 1. If ay < pg4 one can still obtain some classical regularity of
the solutions, the results being somewhat worse than in the case oy = . More
precisely, we have the following: If ay < o < p4 and if k& > ¢1, where ¢; is the
smallest integer larger than o — a1, then the implications (2.38)—(2.39) hold when
k is replaced by k — ¢; at both sides of those implications. Similarly if o > py
and k > ¢ + 1, where {5 is the smallest integer larger than or equal to puy — ay,
then eqgs. (2.40)—(2.44) hold with, however, k replaced by k — ¢3; this substitution
should be done in both members of the implication (2.41). For the validity of (2.42),
respectively of (2.44), the condition k > £y, respectively k > ?, should of course be
replaced by k > {y + {2, respectively k > {+05. In all cases discussed here one has
the corresponding a—priori estimates.

2. If (a—, vy ) is only a regularity interval for C¢', \ (M) and if ay = p, then
eqs. (2.40)—(2.44) hold if we moreover assume a_ + 1 < ay, u = o(z*-T1+¢) for
some € > 0 with, however, o = 0 and k replaced by k& — 1; in (2.42) the condition
k > £y should of course be replaced by k > £y + 1; similarly for (2.44). If oy < pt
then the results discussed in Remark 1 will hold with ¢ = 0 and with a value of k
further decreased by 1 as compared to the value there.

PRrROOF: In what follows the symbol o denotes a real number in the interval
(0, A) the value of which may vary from one expression to the next. Let @ be given
by Lemma 2.5, by point (i) of that Lemma and by interpolation (c¢f. the arguments
of proof of Lemma 2.2) there exists 0 < o < A such that

f=Llu—a)e CRfiio (M) cCpr i (M).
By Theorem 1.3 point (i) for all € > 0 we have u — 4 € C’gi;ja7k+a(Mmo) so that
L(u— 1) € C,’:i’;:;;_HU(Mm) N C’:I;;+U(Mzo); interpolation gives L(u — @) €

CIQLI:I:JFU (M,,). We have

u — 0 = Yxht + Go[f] — Go[L(u — @)] (2.46)

with some function ¢ (v), and it follows from this equation at = x¢/2 and from
(4.14) that ¢ € Cx4,(0OM). Let ¥ be given by Lemma 2.7, set & = u — @ — 1, we
then have

so that we can write
@ = Go[La] — Go[Li] . (2.47)

It follows that @ € C’SLZIZ(MID) and Lemma 1.4 gives @ € C’si;fkarg(Mwo).

Lemma 2.8 with 6 = uy, A there replaced by o, and £ = m = k yields

~ 2+ p4+k+o
u—0—P€C oy, 01 (M,).

Eqgs. (2.40)—(2.43) follow now from Proposition 2.2. O
Similar arguments give the following, no details will be given (note that below
we are not assuming that ay = pq):
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THEOREM 2.10 (Classical boundary regularity, u+ — « € Np). Let (a—, o)
be a strong regularity interval for Cf, (M) for a geometric elliptic operator L €

P2 iy A E (0,1), suppose that L is of the form (2.1)—(2.4) and that
ap < iy, a_ <a< g, pp — € No,
Lu=f € 2Cryr(M), u=0(z*1), e>0.

For ae < a4 set £ = 0, otherwise let £ be the smallest integer such that oy +¢ > a. If
a+k > pi+0+1, then there exists ¢ > 0 and ujog € NiZ, o2 g —i Ck_(}w_a)ﬂ_s_,\(]\zf)
such that

U — Ulog logz € ﬂfzoxo‘_iC’k_HHU (M,,) . (2.48)

If wiog|loar = 0, then uiog = 0. The constant o depends only upon o, pi4, a, A and
k. Moreover when Fy, F5 denote any of the summand spaces in eq. (2.48), then the
a—priori estimate (2.45) holds with a (v and f independent) constant C'.

REMARK: If (a_,ay) is only a regularity interval for Cf, \(M) and if we
moreover assume that a_ +1 < oy and u = O(z*-T1+¢)
(2.48) holds with ¢ = 0 and with k replaced by k — 1.

Theorems 2.6, 2.9 and 2.10 were proved assuming the existence of a (strong)
regularity interval in weighted Holder spaces. In weighted Sobolev spaces we have
the following corresponding result:

for some € > 0, then eq.

THEOREM 2.11. Let p € (1,00), and let ? be the smallest integer larger than or
equal to (n —1)/p (recall that n = dim M). Let L € OPZ ary A€ (0,1) be a
k+L+4+X

geometric elliptic operator of the form (2.1)-(2.4). Suppose that for allw € (w_,wy)
there exists 0 < 1 < x¢ (possibly depending upon w) such that

L:-w{PnWsP (Mg, ,g,27 "dug) — W™ (Mg, , 2™ "dpg)
is an isomorphism, with g < w_ < min (w_,_, by — —) Define
~1 —1
(a—,aq) = (w 1= , min (u+,w+ + 7)) . (2.49)
p p

Let u € WE'°°(M) satisfy

Lu=7f, fExO‘Ck+2+)\(M), (2.50)
with a > a_. Suppose finally that either
u=0(*T9, >0, (2.51)
or
u€ WP (Mg, , 7 "dpg), w>w_. (2.52)
Then:

((i)) Consider a € (a_,ay), let £y € Ny be the largest integer such that
a+ 4y < py. There exists o > 0 such that

at+k<py = uwenaTiChiso(M,,), (2.53)
k>0ly =— wue ﬁg—"_éilfa Cgo+z+g|k 2 (M ) (254)
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((ii)) If oy < py4 consider oy < o < pg. Define ¢4 to be the smallest integer
larger than o — ay. If k — ¢; > 1, then the implications (2.53)-(2.53)
hold with k — ¢; substituted for k£ at both sides of those implications.

((iii)) If p+ — @ € Ny, then the conclusions of Theorem 2.10 hold.

((iv)) Let ¢5 € Ny be the smallest number larger than or equal to py — .
If @« > py and if in Theorem 2.9 we replace the conditions on k by
conditions on k — 5 (in particular the condition k — ¢ > 1 must hold),
then the conclusions of Theorem 2.9 will hold with k replaced by k— /5.

Moreover the a—priori estimates of those theorems hold modified in the obvious
way.

PrROOF: When (n—1)/p is not an integer the result follows from Theorems 2.3,
2.4 and Lemma 2.8 using the arguments given in the proofs of Theorems 2.6 and
2.9. Here Lemma 2.8 is used with £ = k or £ = k — {1, and with k there replaced by
k + {. Note, however, that for (n —1)/p € N a verbatim application of Theorems
2.3 and 2.4 would lead to a result worse by one as far as differentiability of w is
concerned. This can be improved by noting that, in the notation® of Theorem 2.3
and under the hypotheses there, for o« < a4 the inclusion (2.24) in Theorem 2.3
can be replaced by

Ve>0 u—aeCry o (M), (2.55)

In eq. (2.55) the constant / is as defined in the statement of Theorem 2.11. This is
sufficient for our purposes and leads to the result here with / — as described in the
statement of Theorem 2.11. Similarly for (n —1)/p € N the constant § in Theorem
2.4 can be chosen so that a4 + 0y — 146 is arbitrarily close to . The result follows
then by the same arguments as indicated above. O

3It should be stressed that k in eq. (2.55) does not coincide with k used in the statement of
Theorem 2.11.



CHAPTER 5

Nonlinear equations with polyhomogeneous
coefficients.

1. Polyhomogeneity of solutions of some fully nonlinear equations

In this chapter we shall show, under appropriate hypotheses, that solutions of a
class of (uniformly degenerating) fully nonlinear second order systems of equations
are polyhomogeneous near 0M. Roughly speaking, to prove polyhomogeneity of
solutions we shall need

((i)) existence of a polyhomogeneous “approximate solution” ¢,
((ii)) existence of a “regularity interval” for the equation linearized at ¢,
((iil)) boundedness of the solution in some weighted Holder class.

More precisely, consider a system of equations of the form
FAly, ¢P 20,05 ,2%0,0;0"] =0, A=1,...,N, (1.1)
or, shortly,
Fl¢] = 0.
We shall assume that both the fields ¢ and the equations (1.1) are geometric in
the sense of Chapter 4, we leave to the reader the easy task of formalizing this

notion along the lines of Chapter 4. We shall assume that we have an approximate
solution ¢g of equation (1.1) satisfying

¢O E-Aphgch(M)v (12)
Floo] € Apng N C°(M),  ag > 0. (1.3)

The functions F4(y, 25, pP, qg) will be assumed to be continuous with respect to
all the variables, smooth with respect to the variables z, p, ¢, and polyhomogeneous
w.r.t. z in the following sense: for all multiindices v1, v5, v3 we have

0102202 F) € Apng N Co(M) (1.4)

and for all ¢ and for all multiindices u, v, v2, v3 it holds that
(€0,) LN 82 0 F € CO(M x RNUIH+71+1%)), (1.5)

REMARK: It should be clear from the proof below that it is sufficient to assume
(1.5) in a neighbourhood of the graph of ¢ over M, defined as

{(y, b0, 2060, 220;0;60),y € My, } C My, x RNIFH07).
Let F'[x] be the linearization of (1.1) at ¢ = x:
OFA OF* | ayP  ,OFA *yP
B T A T T o E W
027 lo= Op;* 1o=x Oy 5% ¢=x 0y' Oy’ (1.6)

F'xJv = VP +
X
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Our hypotheses above are motivated by the harmonic map equation (under appro-
priate conditions; cf. [565, 56, 31] for some related results), and by the equation for
hypersurfaces with prescribed mean curvature (cf. [49, 7]). Indeed, for metrics on
the source space of the form §;; = 7 2g;; as considered in Chapter 3 or in Chapter
7 the harmonic map equation will be of the form considered here. Similarly, in a
space—time with a smooth or polyhomogeneous Scri, spacelike hypersurfaces inter-
secting Scri transversally will satisfy an equation of the form (1.1). Our theorem
below together with the remarks following it reduce the question of boundary reg-
ularity of solutions to those equations to an a—priori estimate in C{'(M,,) spaces,
together with the proof of existence of the strong regularity interval. Note that for
the prescribed mean curvature equation the existence of a strong regularity interval
for appropriate approximate solutions required in Theorem 1.1 below follows from
the results in Section 2.
We have the following:

THEOREM 1.1. Suppose that (1.2)—(1.5) hold, assume that F”[¢y] is a geometric
elliptic operator of the form (2.1)—(2.4) considered in Section 2 and that F’[¢o] has
a strong regularity interval (a_, ) with

ay >0, ap > o . (1.7)
Let ¢ € C'2°(M) be a solution of (1.1) satisfying
¢ — o € CL(My,), a>max(0,a_). (1.8)
Then
¢ € Apng N CO(M,,).
REMARKS:

((i)) In the case when eq. (1.1) is quasi-linear, i.e., linear in second deriva-
tives, then eq. (1.8) can be further weakened to ¢ — ¢g € CF(My,),
a > max(0,a_). Finally, if eq. (1.1) is linear both in second and first
derivatives of ¢, then eq. (1.8) can be replaced by ¢ — ¢g € C§(M,,),
a > max(0,a_); c¢f. Proposition 1.4 below.

((ii)) If (a—,4) is a weak regularity interval, the result remains true if we
add the conditions ay —a_ > 1,0 > a— + 1, > max(0,a_ + 1), cf.
the Remark following Lemma 1.3 below.

PRrROOF: We shall prove that there exists a sequence s; —; o 00 and a sequence
of functions ¢; € Apng N Co(M) such that

¢i — ¢ € C5 oo (M) + Apng N Cy° (M) (1.9)

from which the result follows. We shall proceed recursively; suppose thus that ¢,
has already been defined for some 7 > 0: Then ¢ satisfies the equation

Li(¢p — ¢i) = F'[¢il(¢ — ¢i) = Gip — ¢i) + F (), (1.10)
where
Gi(¥) := Fléi +¥] — F'[¢s]y — F[o] (1.11)
We shall need the following two Lemmata:

LEMMA 1.2. Let ¢; — ¢ € Apng N Cy°(M). For k € N§°, A € [0,1], § > 0 we
have:
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(1) kNG, A€ [0,1], 4 € C2 4y (M),
Gi(y) € ng,k+)\(M10>‘
(i) & € Apng N CH(M,),
F(¢o + %) € Apng N Cy ) (M)
((ii1) © € Apng N C(May), X € CL 4y x(Ma,),
(F'[o + ] — F'lo))x € CLI50) (M) .

ProOOF: Point (ii) follows from (1.4)—(1.5) using the Taylor expansion. Points
(i) and (iii) follow by a straightforward analysis of the remainder term (1.3) in the
Taylor expansion. O

We can find sg > max(0,«_) satisfying so < min(«o, ap) and sg < a4. De-
creasing « if necessary, we may assume that sg = ag. We have

LEMMA 1.3. ¢ — ¢g € C33  (My,).
PROOF: Let u = ¢ — ¢y and consider
Glu] = Flgo + u] — F'[¢po]u — F[¢o)]. (1.12)

We will argue by induction. Fix an irrational § € (0,1) so that 2sg — 6 > sg.
It follows from our assumptions that u € ng,o which is the starting point of the
induction.

Now assume that u € C3?,, for some k € N. By point (i) of Lemma 1.2,

Glu] € Cij?kg. For any f € ij”ke and any multiindex v we have
(x0y)"f € Cij?ke N Cii,%il-
Applying interpolation as in the proof of Lemma 2.2 gives with the above choice of
0,
(@0y)7f € Cglsye
but v was arbitrary so we get f € C2° (k+1yp- Applying this result to G[u] and
noting that F[¢o] € C0  and F[¢o + u] = 0 by assumption, we find

F'lgolu € C2 (k+1)0°

By assumption (a_, ay) is a strong regularity interval for F’[¢g] and s € (a—, oy ).
We can now apply Theorem 1.3 to conclude that v € C’;g,(k +1)0° It follows by
induction that u € C33 . O
REMARK: In the case when («_,ay) is only a weak regularity interval, the
above argument is valid only under restrictions on sy. Instead the appropriate
version of Lemma 1.3 is proved under the conditions outlined under point (ii) of
the remark following Theorem 1.1 by considering the identity
e = |Fonl - 1) o+ rlon] = el

F'[¢o] bo) -

P04 90a T gpaltol — 5ozl -

By eq. (1.3) and by point (iii) of Lemma 1.2 each group at the right hand side of this
equation is in C52. From ¢ € C0 we have 0¢/0v? € C52~ 1, and since (a_, ) is
a regularity interval and both sy and so — 1 are in (a_, o) we find d¢/dv? € C22,
hence ¢ € CQJ. The result follows by an inductive repetition of this argument; cf.
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the proof of Theorem 4.4 in Chapter 7 below for a more detailed exposition in a
similar context. O

Returning to the proof of Theorem 1.1, Lemma 1.3 shows that (1.9) is satisfied
with ¢ = 0. Consider again equation (1.10). By Lemma 1.2, point (i), we have
Gi(p—¢:) € C25 ,(M). Now point (ii) of Lemma 1.2 gives F[¢;] € Apng NCG° (M),
thus

Li(¢p — ¢i) € OZi + Apng N C5° (M).

This and point (iii) of Lemma 1.2 imply
Lo(¢ — ¢i) = (Lo — Li)(¢ — ¢5) + Li(¢ — ¢5) € C5E20 + CZi + Apng N CGO (M) .

A straightforward extension of Lemma 2.5 shows' that we can find ¢ € Aphg N
C§° (M) such that

Lo(¢p— ¢; — ¢) € C3itao + C%i . (1.13)

Similarly, for s; + ag > py it follows from a straightforward extension® of Lemma
2.7 that ¢ can moreover be chosen so that

¢ —¢i — = o(zh).
Here p4 is the larger indicial exponent of Ly, as defined at the beginning of Chapter
1. Lemma 2.8 gives

¢ — i € Apng NCG(M) + C5T2 0 = min(s;, ap) > s9 > 0.

00,007
¢i+1 is now defined as ¢; plus the sum of those terms in ¢ — ¢; which are polyhomo-
geneous and which decay slower than s;1; = s; + 6. This completes the induction
step, and the result follows. O
Now we specialize to consider the cases when F' is quasi— or semi-linear. For
such equations we shall show that the hypothesis ¢ — ¢g € C% (M,,) can be weak-
ened.

DEFINITION 1.1. e We will say that the system F' is quasi-linear if
F is of the form

F[p] = 220" 0;0;¢ + ¢ (1.14)

where a¥ = a" [y, ¢, vO,¢] and similarly for c.
o We will say that the system F' is semi-linear if F' is of the form

F[¢] = 2%a" [y, $]0:0;¢ + xb'[y, ¢ 0i + cly, ] (1.15)
PROPOSITION 1.4. Assume that F is of the form (1.14) with F satisfying (1.4)—
1.5). Further let ¢y be an approximate solution to F[¢] = 0 satisfying (1.2)—(1.3).
Assume that F’[¢o] is an elliptic operator on M in the sense of Section 1, that
Flg] =0,
and that
b — ¢ € CF(M,,) N CX(M), a>0. (1.16)

IThe result needed here can actually be proved in a rather simpler way as compared to the
proof of Lemma 2.7: Indeed, all the functions appearing in the polyhomogeneous expansions are
smooth in the v variable, so that in the proof one does not need to use the extension operators of
Lemma 3.1.
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Then there exists 7 > 0 such that ¢ — ¢g € C39(M,,), where sg = min(ag, «).
If moreover F is of the form (1.15), then (1.16) can be replaced by ¢ — ¢¢ €
C§(My,) NCY(M), a > 0.

PRrOOF: Let Ly be the operator defined by

Lytp = 2*a" (y, ¢, 201§ 0,0, + xb' (y, ¢, 201 ) Dit)p
and let
u=¢—¢o.
From the regularity assumptions on F', a straightforward argument using Taylors
theorem shows the existence of some x1 > 0 so that Ly € Ong (Ma)) is elliptic in
the sense of Chapter 1 and
L¢U S CSO (Macl) .

Now an application of interior estimates and scaling gives u € C7},(M,, o) for
A € (0,1). From the above we have that u € G}, (M,, /2) with k = 1 and, since
by assumption u € C{**(M), it follows that u € C}°\ (M,,) with k = 1.

We wish to show by induction that u € C}9\(M,,) for all k. We have shown
this to be true for k = 1. Assuming that u € C}% (M, ) it follows from F[¢] = 0
and (1.14), using Taylors theorem, that

Fllgolu € G324 5 (My,).

An application of the scaling estimate Lemma 1.1 gives u € C}%,,(My,). This
achieves the induction step and proves the Proposition. O






CHAPTER 6

The vector constraint equation.

1. Introductory remarks

Let (M, g) be a compact Riemannian manifold with boundary OM, let = be
any defining function for M, for x € M = M \ OM let

Jij =22 gij - (1.1)

As discussed in Chapter 2, to construct solutions of the vector constraint equation
one makes use of the conformal invariance of the system

D, PY =0, Dy, (9i; P7) =0.

There are at least two ways to proceed:

Method 1. Let A% be a symmetric, traceless tensor field (g;; A = 0), suppose
that 3 € R, let the vector field X satisfy

D, (DzXJ +DIX"— = (D X") g”) = —D, (27 AY) | (1.2)
n
where D is the Riemannian connection of g;;. Then the tensor field
BY = D'X7 + DIX" — = (D X*) g7 + 27 AY
n

is symmetric, traceless and transverse for the metric g;; (D;BY = 0). Moreover
the tensor field B = x~("+2) BiJ is transverse for the metric §;; (D; B = 0).

Method 2. Let A% be a symmetric, traceless tensor field (g;; Aii = 0), suppose
that 3 € R, let the vector field X* satisfy

) TS » . o
D, (DZXJ +Dixi -2 (Dka) §”> - _D; (xﬁ A”) (1.3)
n
where D is the Riemannian connection of Gij- Then the tensor field
~. . -~ o~ o~ 2 ~ o~ .. ~
B —DiXI+piIXxi— 2 (Dkxk) gi P Al
n

is symmetric, traceless and transverse for the metric g;; (DjBij = 0). Moreover
the tensor field BY = 2("*2) B% is transverse for the metric g;; (D;BY = 0).
Because of the singular character (recall that = 0 on OM), of the relationship
(1.1) between g;; and §;;, the methods turn out to be quite different. Since the
operator on the right-hand-side of (1.2) is a regular elliptic operator on M (i.e.,
elliptic up—to—boundary in the standard sense), the first method turns out to be
more convenient for proving existence of solutions of the vector constraint which
are smoothly extendable across OM; this is most easily achieved using (standard)
non—-weighted Holder spaces on the compactified manifold, as shown in Section 2.
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On the other hand the evolution problem is most directly formulated in terms of
Sobolev-type spaces, in the non-compactified picture, it is therefore natural to use
the second method to do that: this analysis is carried out in Section 3.

2. (Non—weighted) Hélder spaces on the compactified manifold

In this section we shall prove existence of solutions of the system of equation

AryX =Y, (2.1)

(ArL,X)" = D;L9(X), (2.2)

Li(X) = %(DinDﬂ‘Xi)—leX’“g“ , (2.3)
n

under various hypotheses on the source term Y, where g;; is a Riemannian metric on
a compact manifold M with boundary M by this we mean that (M\OM, g| o )
is a Riemannian manifold and in local coordinates {y'} near M as described at
the beginnig of Chapter 3 the matrix g;; = g (a%i’ %) is strictly positive definite
up to OM, thus:

VX eR" C1) (X2 <y XXT <) (X1)? 2.4
J

for some constant C. D; always denotes the Riemannian connection of g;;.

DEFINITION 2.1. The metric g;; will be said to be of class M}, y, a > 0, if (2.4)

holds and if for 0 < |y| < k we have 0} g;; € C’gf/l\(o’a_h‘)(M) (thus g;; € C)°5, (M),
and in local coordinates near M (cf. the beginning of Chapter 3) we have

o 0
— gl <0,
T

for some constant C, together with an appropriate weighted Holder condition if
A>0).

Note that a metric g € Cppx(M) is in M, , for all a > 0.

T

93| + 197 | + (1 + 227~

o o

PROPOSITION 2.2. Let g be a metric of M, , classon M, 2 < dim M, A € [0, 1],
a>0, k>3, let X € CHM)NWE(M, g,du,), &> 0, p € [1,00), satisfy

1 .. .y 1 g
L(X) = 5(D'X7 + D' X") - — (DrX*) g7 =0. (2.6)
n
Then
X =0.
To prove Proposition 2.2 we shall need the following Lemmata:

LEMMA 2.3. Let g be of class M, k > 3, then for x < xg in local coordinates
we have ‘
T4 |5 + x| Rlg + 2°|DR|, < C(1 +2°71),
for some constant C', where R = (R’ jj) is the Riemann tensor, DR = (DyR' j1ny)
| |n stands for the Riemannian norm of a tensor with respect to the metric h.

PrROOF: Simple computation. O
The result that follows is well known (we use the convention D, D; X i—Dj D X?
Ri[ijZ)Z
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LEMMA 2.4. Let 6X = D,; X", X; = ¢;;X’. Under the hypotheses of Proposi-
tion 2.2 we have X € CX¢(M), and the following hold (n = dim M > 2):
DyDpDiX; = DiyR%ijXe+ R'ijDin X
1

n
D,Dp6X = — 2Ry Dy Xt + ————
b n—2{ k) +n(n—1)

0Xgik

1
XDy ——— Rgir, — R; , 2.8
+ 4(2(n1) Jik k)} (2.8)
where R;; = Rkikj is the Ricci tensor of g;;, R = ginZ-j the Ricci scalar.

PROOF: It is an easy exercise in distributional differentiation to show from (2.6)
and X € WP'°(M, g,dp,) that the equations (2.7)-(2.8) hold in a distributional
sense, which together with X € Cl°¢(M) implies that X € CP¢(M), and shows
that (2.7)—(2.8) hold pointwise. O

LEMMA 2.5. Under the hypotheses of Proposition 2.2 for any ¢ > 0 there exists
a constant C(o) such that

|X|, +2|DX|, +2*|DDX|, < Ca”, (2.9)

where DX = (DZ'XJ‘), DDX = (DlD]Xk)
PrOOF: Equations (2.7)-(2.8) and X € Cf show that DDDX € C§~3, which
easily (e.g.,by scaled interpolation) implies X € C§. Let
I={0c€eR:3C such that (2.9) holds}
since X € O, & > 0, it follows that (—oo,&] C I, thus I # (). Let
o =limsup I,

suppose that ¢ # oo, set 01 = ¢ — % min(«, 1); by definition of & we have o1 € I,
thus

|X|y +2|DX|, +2°|DDX|, < Ca”* . (2.10)
Decreasing oy slightly if necessary we may assume —o1 ¢ N. Equations (2.7)—(2.8)
imply an equation of the form

0. DDX = “I'DDX+ RDX + DRX”
— O(Z’Ul+min(1’a)_3). (211)
Suppose first that o; + min(1, ) < 1; from
T2 af
f(z1,v) = f(x2,v) — 32 (s,v)ds (2.12)
T €
one has, setting f = DDX, x1 = x, x5 = xo,
DDX = O(gr Tmin(la)=2) (2.13)
similarly from
0.DX = “I'DX + DDX” (2.14)

and from (2.12)—(2.13) it follows
DX = O(gortmin(la)=1y (2.15)
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Passing to the limit ;1 — 0 in the equation
X(z,v) = X(x1,v) + / “T'X 4+ DX)"(s,v)ds (2.16)
z1
(the integral at the right-hand-side of (2.16) converges because o1 + min(1,a) >
& > a > 0), making use of X(0,v) = 0, one obtains

X = O(gortmin(ha)y (2.17)

which together with (2.13) and (2.15) contradicts the definition of &, thus o1 +
min(1,a) > 1; suppose that o7 + min(1,«) < 2. (2.13) still holds so that (2.12)
with f = DX shows (¢f. (2.14)) that the limit

Aij(v) = 111’% Din(CE,’U)

exists, and we have

DiXj — Ay; = O(z7Hmin(he) =) (2.18)
while (2.16) gives
X;=0(x). (2.19)
(2.13), (2.18) and (2.19) yield
X =0(1) ,
20X =O0(z'), €=min(0,01 — 1) +min(1,a) > 0. (2.20)

Let vg € OM; (2.12) with f = g;; together with g € Mg implies that f;; =
lim,_.o ¢i;(z,v0) exists. Passing to the limit x — 0 in (2.6) one has

2
Aij + Aji = Efzm Apm fij (2.21)

where f" = (fi;)7* (¢f. (2.4)). The interpolation inequality (cf. e.g. [44, Appendix
Al:

1/2 1/2
1 levonn < CIAIE oan 1 FllEnonn (2.22)
applied to f(v) = X;(z,v) together with (2.19) and (2.20) gives
0X;
(v,z) < Cx/?, (2.23)

thus A = 0. Let e = e(i)j 0; be an orthonormal basis at (0,vg) for f;;, with
€(A) = e(A)B 8UB, 6(1)J_8M, set A(i)(j) = Aij ei(i) ej(j); we have, for A= 2, .., n,
_ k¢ ij
€%A) =0 - A(A)(]) = e(A) e(j) Akg =0 — f J Aij = A(l)(l) .

(2.21) rewritten in the orthonormal frame e,

2
Anm +Ane = Aom 9@ e)
with (i)(j) = (1)(1), (1)(A4) gives
Aij = O,
thus (2.15) and (2.17) hold, contradicting again the definition of &, thus o +
min(1, &) > 2. Going through the whole argument once again one similarly shows

that the limit
Aijk = hII%) DZ'D]'X]C({E,’U())
xTr—
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exists, and A4 i = 0. Algebraic manipulations with the equations

2 . 2
Apij + Akji — - ™ A fij = 31:13% Dy, (Din +D;X; — - g* DX, gij) =0

lead to

Aijk =0.
This implies that (2.13), (2.15) and (2.17) hold again, contradicting the definition
of &, thus & = oo, which had to be established. O

PROOF OF PROPOSITION 2.2: Let
_ 2 2 2 4 2
flx) = (|X|g +x |DX|g + |DDX|g).

We have
of 2 2 2 4
or _ (X, 2D, X) + = 2*|DX > + Z(«DX,2*D,DX) + — 2*|DDX|?> + F,
or = T 9z T g

where F' is given by
F =2(x*DDX,2*D,DDX).
Thus, using 2ab < a? + b2,
4+|Z
ox x

From Lemmata 2.3 and 2.4 it follows

|F| < C2?[DDX|(x™™) 71X | 4 g™ =1z DX])
mein(La)
< ———— (2®|DDX||X| + 2*|DDX|z|DX|)
- mein(La)
X

Therefore, for 0 < 2 < xg, we have

ﬁ<4+|%|g+c of

< 2L
Or — x f= x’
for some constant o, so that for 0 < xy < z < x( one has
In [f(x)xl] <0,
flz1)zo
which implies
f(fE) < f(:il) 77
1
Passing to the limit ;1 — 0 one obtains from Lemma 2.5
f(z)=0,
thus X vanishes in a neighbourhood of M, which by well known results on con-
formal Killing vector fields (¢f. Lemma 2.4) implies X = 0. O

PROPOSITION 2.6. Let g be a Cyy (M) N M$ metric, £ > 2, o > 0.
((i)) Forp € [2,00) if k =0 and p € (1,00) if 1 < k < ¢ — 2 there exists a
constant C' such that for all X € V([)/"l’ﬂWiH(M,g, dpg) we have
X lwr

k+2

(M,g,dpg) < C||AL,g X”W,f(M,g,dug) . (2.24)
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((i1)) For 0 <k <¢—2, A € (0,1), there exists a constant C such that for all

X € Crya12 (M) satisfying X (p) = 0 for p € OM,
||XHC]C+2+)\(M) S C”Ang X||Ck+)\(]\7[) N (2'25)

ProoF: To prove (2.24), recall that since Ay, 4 is elliptic we have the estimate
[2, Theorem 10.5]

1Xlws,, <€ (1AL Xllwy +11X]122) - (2.26)
Suppose that (2.24) does not hold; thus for ¢ € N there exists X; such that || X;||z: =

1 and )
1ALy Xillwy < = 1Xlwy

k2
(2.26) implies
c )
Xilhwz,, < & 1Xillwz, +C = I Xillwg,, <2Cfori > 20,

therefore
2C
P S

1ALg Xillwp,, <

By the Rellich-Kondrakov theorem a subsequence, still denoted by X;, can be
chosen converging strongly in W2 to X, € W, and we have

VY €W (M, g, dpy) / (DXZ, + DIXL, — 2 DXk ) D;Y, dpsy = 0.
M " (2.27)
Elliptic regularity (cf. e.g. [39]) and g € Co(M) give X, € C144(M) for some & €
(0,1), while g € M implies that X, € Wg)’loc(M, g,dug) for all p € (1,00). Setting
Y = X in (2.27) it follows that X, is a conformal Killing vector. Proposition 2.2
implies X, = 0, which contradicts || Xs||z: = 1, and proves (2.24).
(2.25) is proved in a similar (and simpler) way, using

1Xl 6 ni0) < € (1820 Xy o + 1K N2s0ran,)
(cf. [2, Theorem 9.2]) and the Arzela-Arcoli theorem. O

THEOREM 2.7. Let g be a Cyy (M) N M metric on a compact manifold M
(with boundary), £ > 2, A € [0,1], a > 0.

((i)) Suppose that A € (0,1). For 0 < k < ¢ — 2 the map
AL,g : {X S Ck+2+,\(M) : X(p) =0 forpe 8M} — C/.H_)\(M)

(2.28)
is an isomorphism.
((ii)) For p€[2,00), k=0,0rpe (1,00), 1 <k <¢—2 the map
Apg: W’fﬂWQJrz(M, g,dpg) — WE(M, g,dpg) (2.29)

is an isomorphism.

REMARK: If £ > 3 then g € Cy(M) implies g € M$ for all & > 0, cf. Definition
2.1.
ProOF: (2.24) with p = 2, k = 0, shows that the problem

AL, X=Y, VYeI? Xew? (2.30)
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satisfies the coerciveness condition, existence of a weak solution follows from the
Lax-Milgram theorem [40, Theorem 5.8], regularity follows from e.g. [39], unique-
ness of solutions follows from (2.24). O

THEOREM 2.8. Let M be a compact manifold (with boundary), suppose that
g is a metric on M = M \ OM which can be C extended across OM, let = be any
smooth defining function for 0M. Consider the equation

ApgX =2%Y, Y € Coo(M). (2.31)

((i)) For a € Ny and for any X € Cu (M) there exists a solution of (2.31)
of the form

X =Xo+ Xy, X1 €Co(M), X, =0(z). (2.32)

X is uniquely determined by Y and by OM > p — Xo(p), in the class
of W2(M, g,dpugy) solutions of (2.31).

((ii)) For a ¢ Z there exist Xo42, Xo € Coo(M) such that the vector field X
given by

X =2 X010 + Xo (2.33)

is a solution of (2.31). X is determined by Y, in the class of solutions
having the described properties, up to the addition of a C, (M) solution
of the homogeneous equation (c¢f. point 1).

((ili)) For —a € N there exist X442, X0, Xiog € Coo(M) such that the vector

field X given by
X =2 Xoi2 + Xo + log z Xiog (2.34)

is a solution of (2.31). If a = —1 then there exists Xiog,1 € Coo(M) such
that Xjog = o Xiog,1. X is determined by Y, in the class of solutions

having the described properties, up to the addition of a C', (M) solution
of the homogeneous equation (cf. point 1).
REMARKS:

((1)) In (2.33) one can replace Xqi2 by Xoio+ Xato, with Xop0 € C2(M)
without changing the form of (2.33), thus X2 is not unique. A similar
remark applies to (2.34).

((ii)) For a«+2 > 1/2, X in (2.33) is unique in the class of solutions which

are in 021/%6, € > 0, as follows from Proposition 2.2.

PRrROOF: Point 1 folows immediately from Theorem 2.7. To prove the remaining
claims, let

Xa+2 = Zat2 + Va2, Zoya L Dx, Voo~ Dz.

A straightforward calculation gives

5 2(n—1
2AL79 (l,a+2Xa+2) =(a+1)(a+2)z” |DCC‘§ {Za+2 + % Va+2} + Wata,
(2.35)

_ a+l /!
Wago =27 W, 0,
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with W/ 5 € Coo(M) if Zyy2,Vaso € Coo(M). For a # —2,—1 we can choose

Zat2 and Vg € Coo(M) so that

2(n —1
(@)@ +2) i {(Zoea+ 2D visa ) (D02} = i

and if we

}/1:

X, =

(2.36)
set
1 2(n—1 _
sy =@ i@+ e (Zua+ 2D v ) bWl e ot
X — $a+2Xa+2 5

then X will be a solution of (2.31) if X satisfies

201, X1 =21 Y;. (2.37)

Suppose first that —a & Np; continuing as above we can find a sequence {XQHH}ZﬁO

of vector

for some

fields Xa+2+i € Cuo (M) such that
N . ~
201, (Z AR Xa+2+i> =Ny, (2.38)
i=0

Yn € Coo(M). By Borel’s Lemma 1.2 there exists a smooth vector field

X o429 such that

o0
Xoya ~ Z ' Xototis
i=0

and by (2.38) we have

2AL 4 (2912 X 0 40) —2°Y € OX (M) C Coo(M).

By Theorem 2.7 there exists a vector field X7 € Coo(M), X1(p) = 0 for p € OM,

such that

QAL)g X1 = J}a Y — AL,g (xa+2 Xa+2) .

Setting X = 22 X2 + X, one obtains the required solution.
For —a € N after a finite number of steps in the procedure leading from (2.31)

to (2.37)

one obtains, for some Y_o, X; € Cao (M),

-1
2A1, (X — Z z’ X> =z72Y.,, (2.39)

i=a+2

which can be solved to leading order by setting

Xlog = (Zlog + ‘/log;) Zloga Viog € COO(M) ) Zlog 1 Dz, Viog ~ Dz,

. 2(n—1) .
ig}% {(Zlog + n‘/log) Dx|g2]} = _9}’% Y—Za

and we obtain

—1
2A14 (X - Z 2t X, — long10g> =27 'Y, + log © Yiog
1=a+2

with some Y_1, Yiog € Coo(M). For ¢ € N consider
Xlog,i = (Zlog,i + Viog,i) ) Zlog,ia Viog,i S COO(M) ) Zlog,i L va Viog,i ~ Dzx.
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‘We have

- ) . 2(n—1
2Ap 4 (Xiogix'logz) = :vZ*?{i(z'f 1 logax+2i—1} \DI|§ {Zlog,i + % Vlogﬂ-}

+J}i_1(VV10g,i Ing + Wz) s

with Wi, Wiegi € Coo(M), and proceeding as before one shows that there exists
Xiog € Coo (M), with Xiog ~ > ip 7' Xiog,i such that

AL g (Xiog logz) — 'Y, — log 2 Yiog € Coo (M)

(note that if & = —1 then Xjog = ¥ Xjog,1, for some Xjog1 € Coo(M)), and the
result follows by point 1. Uniqueness, up to a smooth solution of the homogeneous
equation, follows by construction. O

Theorem 2.8 shows that a natural space in which solutions of equation (2.31)
“live” is the space of polyhomogeneous vector fields. This leads us to introduce the
following:

DEFINITION 2.9. A metric g on M will be said polyhomogeneous, and we shall
write g € MPP8 if g is strictly positive definite up to dM, in the sense of (2.4),
and if in local coordinates near M as described in Chapter 3 the components g;;
of the metric tensor are polyhomogeneous functions. We thus have (¢f. Chapter 3)

I 9]
gij(w,v) ~ Z Z Gijmnk (V) R €,

for some functions gijmnk(v) € Coo(8M), and some sequence {(s;, {Ni;}520)}—o,
with s; € R, Nij €Ny, I € Ngo, §; > 8j for i > j.

It should be remarked that (2.4) implies that so = 0, >_,; (gijooo(v))* > 0,
and that Ngg = 0. A metric g € C (M ) is necessarily polyhomogeneous, and we
also have MPhe ¢ M2 = N M (cf. Definition 2.1), for some o > 0 (we have e.g.
a=s1if s1 <1 and Nig = 0, etc.).

The proof of the following result is a straightforward repetition of the proof of
Theorem 2.8, the details are left to the reader:

~ THEOREM 2.10. Let g be a polyhomogeneous metric on a compact manifold
M with boundary, which can be Cy extended across OM , consider the equation

AL, X=Y, YA, (2.40)

((i)) For any Y = o(z~2) and X € Co (M) there exists a solution of (2.40)
of the form

X =Xy + X,, X, e AP X, (p)=0 for pe M . (2.41)

X is uniquely determined by Y and by OM > p — Xo(p), in the class
of polyhomogeneous solutions of (2.40).

((ii)) There exists a solution X € AP"® of (2.40). Any two polyhomogeneous
solutions of (2.40) differ by a solution of the homogeneous equation, as
described in point (i) above.
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3. Weighted Sobolev spaces

In this section we shall establish existence of solutions of the equation
Ap,X=Y, (3.1)

with g;; = x 2 gij, gij — Riemannian metric on a compact manifold A with
boundary OM, x — a defining function for M, under various conditions on Y.
Let us set

S T T y
L(X)¥ = (D'X7 + DIX") — ~ DpX* g, (3:2)

where D; is the Riemannian connection of the metric Gij, let L* be the formal L2
adjoint of L, we have

Aj ;X =D LX)V = —L* L(X). (3.3)
The operator A igls of the form considered in Chapter 4, in fact we have
Ap X7 = 2" D" LY(X))

= 2*Ap, X —nz Dz L (X),
with A, g, L¥ — defined in (2.1)-(2.3). In local coordinates as described at the
beginning of Chapter 3 this can be written as

AE@X = \Dx@ {(xZ 6% - nx@w) ¢+ f)gi)} , (3.4)

where ¢! = (1 - 1) X!, ¢4 = X4/2, with L of the form (2.3), and the theory of
Chapter 4 will apply if we can show the existence of some regularity interval, either
in weighted Holder or in weighted Sobolev spaces. Let us note that the indicial
roots for Ai,é are

(hospis) = (O,m+1). (3.5)

In this section we shall make appeal to some results of [3], let us shortly discuss
the notational correspondence between [3] and this paper. We have § here < ¢ in
[3], 2 here <> p in [3], g here «» h in [3], thus § = 2~ 2g here while g = p~2h in [3].
Let X be an s-covariant r-contravariant tensor field, we have
X el here < Xe CE’;‘JFS,T in [3]

X € H*(M,§) here « X e H>*"(M,g) in[3]

o X eWX*t*(M,g) as defined in Chapter 3.
We will also use spaces

H,?’B(M, g) < W,SHSJFT”BQ(M, g) as defined in Chapter 3. (3.6)

Let us start with a McKean-type inequality (cf. [61]):

PrOPOSITION 3.1. Let g be a MY, o > 0, metric on M and suppose that f is a
(4 tensor field with suppf C M., with some ¢ > 0. For 1 <pand a > —-(n—1)/p
there exists €g > 0 such that for 0 < € < ¢y we have

n—1 .
{[ } +ao<1>} el st < 1D obonssiann
3.7

p

with o(1) — 0 as € — 0.
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PROOF: Suppose first that f is a function. The identity
0= / D; (|f|px_pa_1|Dx\g_21~)ix> dug
M.
written out in detail gives, after some rearrangements,

a0 / D\ fPa P dpy

€

n—1

<y [Dxp D5l fIP P dpug (3.8)

From Hélder’s inequality we obtain

[ 1Dl Dl g

€

. 1/p (r=1)/p
< ([ 1psizreans) ([ ipelisra i)
M. M.

which together with (3.8) gives (3.7).
1
If f is a tensor, the result follows by applying (3.7) to the function ¢(z) (6 4 | f|2) 2
and passing to the limit § — 0, where ¢ is a positive constant and ¢ is any function

satisfying ¢ € C oo (M), ¢lsupps = 1. O

We now improve this for p = 2 and for r—forms (we shall need the result
for vectors, which are of course naturally identified with 1-forms). The following
computational Lemma is useful:

LEMMA 3.2. Let g be a M7,y metric on M with 0 < o < 1 and let f]log(m)
denote the Hessian of log(x) with respect to the metric g, where z is the defining
function of OM as above and let s € R. Then the eigenvalues of H),g(,) satisfy

Ni(Hiog(ze)) > —s|D:c|§ +0(27%).
Moreover, the Laplacian Agz®, with Az = D;Di, satisfies
Aga® = —a° [s(n—1— s)|D:z:|§ +0(z7)] .
Further, if we let d* denote the exterior co-derivative w.r.t. §, then
d*(Dx/|Dalg) = —Dy(D'x/|Dxlz) = (n — 1)| Dy + O(z?).
In regular coordinates near M the Riemann tensor ]:'iijkl of g satisfies
Riji = x| D) 2990 — gugjr) + O(a7)],
and the Ricci tensor Rij of g satisfies
Ry = o2~ (n - 1)|Dal2gi; + O(a")].

The following result was originally proved for manifolds close to hyperbolic
space by Donnelly and Xavier [29]. The following argument, due to Lee [52], gives
the result in the general conformally compact case, cf. also [3] for a proof based on
the argument of [29]. We give the proof here for completeness; by definition the
norm || - ||, (ar.,5) here is the norm in H,S’O(Me,g)7 as defined in Section 1.3, page
19.
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LEMMA 3.3. Let £ be a C* r—form with suppl|é|; C M, let g be a MY N Cx°
metric on M, o > 0. Then, for r < (n—1)/20rr> (n+1)/2,
(n—1-2r)2

1 +o(1)| I1Dlg€ N, (ar. ) < N Nroar, 5 + 214" €N (ar, 5

(3.9)

Proor: To avoid a proliferation of tilde’s, we momentarily suspend the con-
vention that geometric quantities refering to the metric g are decorated with tildes.
Thus, until specified otherwise all geometric quantities refer to the g metric. Let
{e;} denote any local orthonormal frame for TM and {e’} the corresponding dual
coframe. Let D denote the covariant derivative of the metric acting on tensors,
with D; = De].. Recall the identities

d¢ = ) ¢ ADjE,
¢ = > - VD¢,
d(e™¢) = e "(d§—dung),
d*(e*§) = e"(dE—duvyg),
d(du\/{“) = _dUVd£+Hu§+DDu€7
|du’[€]” — (Apu)lEf* = —e “Apn(e")|E]?.
Here V is the contraction operator!, H, = Ddu denotes the Hessian of u and H,&
denotes the induced operator on A",
H,& = Didun (e VE).
In the calculation below, Ay = dd* + d*d.
[ letate o + e
M

2

/ |d¢ — du A E* + |d*E — du Vv E|?
M

/ A — 2(d€, du A €) + |du v €2 + d°€ — 2(d°E, du v €) + |du A EP
M

/M<g, AR€) — 2(duV de, €) + (du\ (du A €),€) — 2¢, d(du v €)) + (du A (duV ), )

] (€ 2E) + I — 26, o) = 26 Deeaq )

/M (€, Am€) + |dullEl® — 2(¢, Hoe) — (Aga)le?

= [ e Bue) - e Bne)leP - 206 g
M
We can state this in the form

/ (€, A€) / 6 A BIE + 2, Hing o) + |0d(67 6 + |67 1" (9)
M M

Y

/M O AL GIE + 2E, Hiog o)

Hf o is a gform and 8 a p + g—form, in local coordinates we have (o V Biy..ip =
ad1-Jq Bj1...54i1...ip» Where the indices on aj, .. j, have been raised with the appropriate metric.
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Let us now return to our convention, that quantities referring to the g metric
are decorated with tildes. Choosing ¢ = z® with s # 0,n — 1, a straightforward

computation gives (recall that Ay = —A; when acting on functions)
671056 = —s(n—1-s)Daf2+o(1),
ﬁ10g¢ = [N),f?j loggp = sx_2|Dm|3(nmj —gij +0(1)),

with n; = D;x/|Dz|,. Note that if A € End(T'M) is symmetric with eigenvalues
bounded from below by A then (A¢, &) > Ar|¢|> when A is considered in End(A”).
This gives the inequality

stn 1= s~ 20) (1)) [ |eBIDaldg < [ (g +1d%€ ).
M M (3.10)

Here s is a free parameter and we maximize the left hand side of (3.10) w.r.t. s.
This gives s = (n — 1 — 2r)/2 which inserted into (3.10) gives the result. O

REMARK: Note that in the case » = (n £ 1)/2 the above result does not give
any information better that A, > 0 and this is in fact sharp, as can be shown for
the case of constant sectional curvature.

PROPOSITION 3.4. Let £ be a C° r—form with suppl|{|; C M., let g be a Mg
metric on M with o > 0. Then

(n— 1) / 2 D¢ M
-~ 47 —0( ) || |D$|g§||HO(M€§) S H HHO( 5’!}).

where ' =rif r <n/2and v =n—rif r >n/2.
ProOF: This is immediate from the Weitzenbock formula (¢f., e.g., [38]),

< (dd* + d*d)¢, € >5= |D§|§+ <RAEE >z + pure divergence,
(3.12)

and the asymptotic behaviour of the Riemann tensor, ¢f. Lemma 3.2. ¢f. [11] or
[38] for the precise form of R,. O

PRrOPOSITION 3.5. Let g € Mg, o0 > 0, and suppose that

n—+1 n
2 2(n—1)°

laf <

For every (3 € R there exists € > 0 and a constant C such that for every X € C o(M,)
we have

11X gllee (1410 2))s L2 dpg) S CHAE 5 Xlglleo (14 ma)s L2, dpug) -
(3.13)

REMARK: We believe that the above bound on « is not sharp, and we expect
the inequality to hold for |a| < (n+1)/2.
To prove Proposition 3.5 we need still another Lemma:
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LEMMA 3.6. Let ¢ € Ca(M), X € CO'Q(M%), set Y = ¢X. Under the hypothe-
ses of Proposition 3.5 we have

x = _/ Y; Ap Y dpg <

n—1 -
WD Dol T dug

M, o
— ¢* Xi Ap o X" dpg . (3.14)
Mg, '
PrOOF: From the Ricci identity we have
. o —92 -~
20; Y =AY+ Ry Y 4 P2 Dby (3.15)
’ n

where Ay = D; D is the standard Laplacian, Rij is the Ricci tensor of g;;, and
Y = D,; Y*. This implies

- %(A+B+C), (3.16)

A = /|DY|§, (3.17)

B = —/Rijyiyj, (3.18)
n—2 ~ 2

= = /(DiY) . (3.19)

Setting Y = ¢ X the identity
0= /Di (¢2Xj Din)
written out in detail and inserted in A gives
A:/|D¢|§ |X|§—/¢2Xj Ay X7 (3.20)
Similarly the identity
0= /Di (¢2XkaXk)
yields

n

—_ .~ 2 o~ o~
c_"=? / {(XZ D; ¢) — $2 X' D; Dy, X’“] . (3.21)
Substituting (3.20)—(3.21) in (3.16) one gets, using (3.15),

s oy M2 i 2 2 i
*/{2|D¢5|Xg+ — (X'Dig) —¢* XA X' ¢

which implies (3.14). O
PROOF OF PROPOSITION 3.5. Consider again the equation (3.16). We have

—Ry; Y'Y? = (n—1)|Dzl] (1 +0(1)) 6* | X |7,

so that using neglecting C' in (3.16) and using (3.11) to estimate A one has

{(”“)2

h o) [ 1Dl T dy < .
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which together with (3.14) yields
(n+1)> (n—1) = i
S o) o pe - = Dipoiz} x5 < - [ xia,,x0,
Let € < 1, set ¢ = 2~ %(1 4 |Inz|) 77, for o # 0 we have
- 1
Dol = lala=(1+ [nal) ) 1Dal, (140 (1) )
while if a =0 3
D ¢ls = ||’ |Dal,,

so that in either case 3

1D ¢lg = ¢ |Dz[y(|a] +o(1)),

thus
n+1)2 n—1 i
{0 o] toinaly X1 < — [ 6 X Aug X' di
< lolXlgllzz [91ALg X]gll 2
which implies (3.13). O

Proposition 3.5 shows that Proposition 2.6 of [3] applies, and since A i s
formally self-adjoint, Corollary 2.7 of [3] shows:

PROPOSITION 3.7. Let M be a manifold with boundary with M — compact.
Suppose that g € M, , , and k > 0. For

laf <

n+1 n
2 2(n—1)7

the operator

A H55(M,g) — HPP (M, g)

g
is Fredholm.

REMARK: The spaces H."" (M, §) are defined in (3.6).

THEOREM 3.8. Let M be a manifold with boundary with M — compact. Let
gEMZ 5\, k>1,1€(0,1),0>0,k+A>1(cf. (2.5)) be a Riemannian metric
on M, let § = 272 g where z is a defining function for M. For

n+1 n
TN R </ <
the maps
Apg ¢ H5(M,g) — HP (M, g), (3.22)
Ap, o HYPNH (M. §) — H (M, §)

are isomorphisms.

REMARKS:
((i)) Asnoted at the beginning of this section, H%% (M, §) = WatL82(M, g)
for vector fields.
((ii)) In the physically interesting case n = 3 we get @ € (—v/3,v3). In
local coordinates near M this corresponds, roughly speaking, to vector
fields the components of which behave as 2%, 8 € (2 — /3,2 4+ V/3).
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ProoF: By Proposition 3.7 Aj - is Fredholm, and formal self-adjointness of Aj -
together with duality arguments 1mp1y (cf. e.g. [10, 3]) that it is sufficient to show
that the kernel of Aj - on Hy (M, g) is zero for a’s in the desired interval. Let
thus

Ap,X=0, XeHy"(MG).

The proof of Proposition 3.10 of [3] shows that we have X € HS/’B(M, g) for any

o € (—wi,wy) and B in R, where wy = 2 sty n particular we have

X e HS’O(M, J), the standard Hy Sobolev space on M equipped with the metric §.
For all Y € Hg ’O(M ,§) which are compactly supported we have the integration by
parts identity

[ viag,vie [ L0, (3.23)
M M

where L has been defined in (3.2), and a standard density argument shows that
(3.23) holds for all (not necessarily compactly supported) Y € HS’O(M, g). It
follows that

0= [ Xiag X = [ L0 dus. (3.24)
M M
and we conclude that
- - 2 .
D; X+ D; X; = — Dy X*Gi;=0. (3.25)

Elliptic regularity implies X € H,(:H(M g), and from Proposition 3.10 of [3] it
follows that X € C&ig", for any

|a,|<n+1 n

<V (3.26)

and for some o > 0. If A > 0 the scaling estimates (1.22) imply X € C;iz‘lm()\ o)

while if A = 0 then by hypothesis ¥ > 1 and X € C,i+‘f‘+g, thus in either case

X € 011+a" Conformal invariance of (3.25) implies that (2.6) holds as well, and
the vanishing of X follows by Proposition 2.2. O

The two Theorems that follow can be proved by arguments similar to those
used in the proof of Theorem 2.8, using Theorem 3.8 (¢f. also [6] or Section 2.2
here), the details will be omitted. Let us start with an equivalent of Theorem 2.8:

THEOREM 3.9. Let M be a compact manifold (with boundary), suppose that
g is a metric on M = M \ OM which can be Cy extended across 9M, let = be any
smooth defining function for 0M. Consider the equation

Ap X =2"Y, Y € Coo(M). (3.27)
((i)) For any o and Y there exists a solution of (3.27) of the form

X = ana + 10g J,‘X071 + XO + .Tn+1 10g2 $Xn+1,2 s

X0, X0,1, X0, Xng1,2 € Coo(M) .
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((ii)) If moreover —a ¢ Ny or if X 1]|oa = 0, then there exists a solution of
(3.27) of the form
X =2"Xo + Xo+ 2" logaX,i11
Xa, Xo, Xn+171 € OOO(M) .
If Xn+1,1|6M = 0, then Xn+1’1 =0.
((iii)) Any solution X € W1°¢ of the homogeneous equation satisfying either
1) X € H§ (M, §) with a > —2FL, [o-es or 2) X = O(2*) for some

o> - 2(7"71)), vanishes.

We also have the following equivalent of Theorem 2.10 (¢f. Definition 2.9 for the
definition of a polymogeneous metric). The reader should note that the result below
holds for any polyhomogeneous metric g — this should be contrasted with Theorem
2.10 in which the metric g is assumed to be polyhomogeneous and uniformly Cs up
to boundary.

~ THEOREM 3.10. Let g be a polyhomogeneous metric on a compact manifold
M with boundary, M, consider the equation

Ap X =Y, Y € APhe (3.28)

There exists a solution X € AP"8 of (3.28). Any solution of the homogeneous
equation (3.28) satisfying either 1) X € H§(M,g) with o > —2H /5ty OF 2)

X = O(z®) for some o > 234 (1 — , /5005 ), vanishes.

As far as classical regularity of solutions of eq. (3.1) is concerned, we have the
following Corollary of Theorems 3.8 and 2.11 (here the case dim M = 3 only will
be considered, other cases can be obtained in a similar way):

THEOREM 3.11. Suppose that & > 2, A € (0,1], and let g € Cry14x(M) be a
Riemannian metric on a three dimensional manifold with boundary M, with M —
compact. Define

(a_,aq) = (2— \/§,2+\/§) .
Consider the equation
AE@X:Y, Y €x*Cp
a> o, 1< k <k.

(M),

Suppose that either
u=0(z*7%), €>0,
or
u e WP (My,,x "du,), w>1+V3.
Then there exists o > 0 such that the following hold:
((i)) Let @ < 2+ +/3 and let £y € Ny be the largest number such that
o+ by < 4.
(a) a+k<5 = Xenoa*"Co_, (M)
(b) I% =ly+k+1 = Xe¢ ﬂ?zoma_i CIZ0+i+o|k0 (M)
((ii)) For a € [24+1/3,4) the conclusions of point (i) hold with k there replaced
by k — 1.
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((iii)) Let v € NoN[1,4]. If k > 6—a, then there exists Xjog € Ny (42 'logzC
such that
X — Xioglogz € ﬁf’zoxo‘fiC’,;_HHU(M) .

If X10g|8M = 0, then Xlog =0.

((iv)) Let a > 4, suppose that k£ > 3, and let ¢y € Ny be the largest integer
such that 4 + {p < a.
(a) If 24k < aor ifa € N(or both) = X en! 2?7 C
(b) k>l +2 = Xenty'C, (M) .

1272+’L'+0‘(M) :

ot+itolk—2—¢o

k—1+4+i+X

(M)



CHAPTER 7

The Lichnerowicz equation.

1. Introductory remarks

In this chapter we shall examine the boundary behaviour of the solutions of
the scalar constraint equation, under various hypotheses on the differentiability of
the metric: this is obtained using the methods of Chapter 4 together with a fairly
standard “bootstrap” procedure. We shall construct solutions of the Lichnerowicz—
type equation,

4(n—1)
2

n+2

Ajd—Rp+Co " —n(n—1)¢—2 =0, x>0, (1.1)
with the boundary condition
6 — Daly™ . (1.2)

Let us point out that under suitable conditions on the metric any solution of (1.1)
which is uniformly bounded above and uniformly bounded away from zero has
to satisfy (1.2), ¢f. Theorem 3.2. Here & is a positive constant!, ¢ is a function
satisfying ¢ > 0. Ay is the Laplace operator of the metric §;; = 272 g;5, Ag = D; D,
and R is the scalar curvature of g,n=dim M > 3. If n =3 and k = 7 the equation
(1.1) is of the form (1.23). Note also that if { = 0 then (1.1) is the Yamabe equation
(with the scalar curvature of the metric ¢*/("=2) g;; equal to —n(n — 1)).
We have the equality

R=—n(n—1)|Dz|2 +2(n— NazAsz+ 2> R, (1.3)

where A, = D, D' is the Laplace operator of the metric g, and R is the Ricci scalar
of g. If we assume that ¢ = o(1), Ayz = o(z™!) and R = o(z™2) (which holds
e.g. if g € Crya(M) orif> g € Mg ., with € > 0,k € Ng, A € [0,1]), then from
(1.1)—(1.3) it follows that Az ¢ — 40 0 if and only if (1.2) holds, except perhaps
when ¢ — 0. In that last case one does not expect (M, P/ (n=2) J) to be complete;
it certainly will not if ¢ € Cy(M). This shows that the boundary condition (1.2) is
necessary if the solution ¢ has to have some degree of regularity at M (e.g., if we
look for solutions ¢ € Cy(M)), and if we require completeness of (M, $*/(*=2) g)) .

Note that by carrying out a conformal transformation g — 12g, where 1 is
any strictly positive function of the same differentiability as the metric and which
coincides with |Dz|, near OM, we get

|Dz|, =1 (1.4)

IMost of the results of this chapter remain true when x < —1 and ¢ < 0. When k € (—1,0]
some further restrictions than non—positivity of ¢ are needed for the existence theorem, cf. e.g.
section 2 for a discussion of an example with kK = —1.

2Recall that the space M,§+2+>\ has been defined in Definition 2.1, page 62.

79
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in a neighbourhood of 9M. Assuming (1.4), the linearization of (1.1) at ¢ = 1 gives
an operator which in a neighbourhood of OM takes the form

L=05+¢, (1.5)

If we make the same hypotheses about the metric and ¢ as in the discussion following
eq. (1.3), we obtain

 (n=2) [5 (n—1)n(n+2)
5__4(11—1) R+ (n—2) +I€C:| T (1.6)
We can now rewrite (1.1) in the form
OF (y,u)
Lu:F(yau)+S7 F(yvo):aTuzozoa (17)
with
u=¢—1,
L as in (1.5) and, assuming (1.4),
(n-2) =
Fyu) = Ln; 2 {(1 )R g ZJ_F; u}
(TL— 2) —K
—mg{(lJru) —1+Hu}. (1.9)

Let us point out that the form (1.7) of the Lichnerowicz equation is sufficiently
general to cover many other matter models than the vacuum case considered above,
¢f. the discussion in Section 2. For this reason, and with future applications in
mind, we will in the rest of this chapter discuss equations of this general form.

2. The linearized equation

Before passing to the non-linear equation (1.1) it will be necessary to give a de-
tailed discussion of the properties of the linear operator (1.5). In order to be able to
apply the results of Chapter 4 to that equation we have to prove existence of a regu-
larity interval for L. It has been shown in [3] that (o—, ay) = (—(n+1)/2, (n+1)/2)
is a strong regularity interval for L for H§(M, g) = W,?’OQ(M, g), with T/V,S’OQ(J\J7 g)
defined in Section 1.3. This and Theorem 2.3 show that (a_,a4+) = (—1,n) is a
regularity interval for C¢,, ,, with (n —1)/2 < £ < k. We shall show that a direct
analysis in the framework of weighted Holder spaces gives (a—,a4) = (—1,n) as a
strong regularity interval for C7, ;.

Let us start with the observation, that for g € Cyriasa(M),k € No, X € (0,1),
we can write

L

z? (Ag — <n;2)D1x82> +¢
= [Da2{ (2?02 -2 (n—2)0, —n) + L}. (2.1)

It follows that after a trivial rescaling L can be written in the form (2.1)-(2.2),
with L of the form (2.3). The indicial roots for (2.1) are (cf. (2.7))

p— = —1, Py =10
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To motivate the hypotheses of the theorem to follow, let us note that if g € Mg, ,

k € Ng, A € (0,1) for some € > 0, then we can still formally define L using eq. (2.1).
Doing so and assuming (1.4) we obtain

Va e R La® = O(z*T¢). (2.2)

In the result that follows, a scalar operator is defined as an operator which maps
functions on M to functions on M.

2
TurOREM 2.1. Let L € OFZy (),

elliptic operator satisfying (2.1)—(2.2) and (2.4), with L satisfying (2.2) and with
indicial exponents p_ < ps (cf. eq. (2.7)). Consider the equation

Lu=f. (2.3)

k € No, A € (0,1), be a scalar geometric

Then

((i)) For every § € R and a € (uu—, 1) there exists 0 < 21 < z( such that

for every f € C?ﬁ\(Mxl),ﬂ/ € Chio4r(OM,,), there exists a solution

u < C?fﬂA(Mwl) of (2.3) satisfying u|5Mx1 = ). Moreover L has a

strong regularity interval (a_,«a4) for C,‘:f)\(M) with oy = py, and
with no restrictions on f.

((ii)) Assume further that M is compact, with p4 > 0 and with L — elliptic
in the standard sense on C' M, , with coefficients in C***(CM,,) and
with a9 < 0, where ag is the O-order coefficient of L in (1.3) (this
condition on ag is supposed to hold throughout M, not only near OM).

Then L : C;:’fH)\ (M) — C,‘:f)\(M) is an isomorphism.

REMARKS:

((1)) Assume that g is a Mg, ,,, metric on a compact manifold M (with
boundary), k > 0, A € (0,1), € > 0, and §;; = 2 g;;, where z is a
defining function for M. Then Theorem 2.1 applies to equations of
the form

Lu = Agu+ 2 ¢ §(dr, du) + Eu = f, (2.4)

provided that & = p+ 1, & = q|D;v|3 + g, with ¢, € Cf 5, a=1,2,
2
and with § = (%) — ¢ > 0. In that case the indicial exponents

areui:ai:Wiﬂ.

((ii)) Graham and Lee [42, Theorem 3.10] have proved the following related
result (we use here the notation of Remark (i) above): If (M,g) is
the hyperbolic space (M ~ R", with § — the maximally symmetric
metric of sectional curvature equal to —1) and & = v = 0, then for
a € (u—, py) the operator L defined in (2.4) is an isomorphism between
Criagpr (M) and CF\ (M).

PROOF: For o € R, let L, be the operator defined by L,u = z° L(z~°u). Then L,
is of the above form with the indicial roots fi+ = pu+ + o (¢f. egs. (2.7)—(2.4)). Let
a=a+o0 and f, = 27 f. By choosing ¢ > —pu_ and considering the equivalent
equation L,u = f, we may without loss of generality assume that @ > ji_ > 0 in
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the following. Now L, can be written in the form

- 0 o 0 o 0
L, =z%a™ 922 + 22 ‘”Aafaj—k z’a ABa Eirw +xa’4817 +xa$%+a0.
Setting o« = 0 in (2.2) we obtain ap = O(z¢). Note moreover that the constant
b of eq. (2.2) for L, so defined must be negative as i_ > 0. It follows that the
comparison principle applies for L(, in My, provided that x is chosen small enough.
Consider (2.3) with f € C} +>\( ). A straightforward calculation shows that
there exist constants C, 0 < x; = x1(a, 8,L) < x¢ such that for © < x; the
functions

B
. 1
(bi =4+C ||fUHCd,/3 % (1 +In >
0 X
are super— and sub-solutions of (2.3):
(La¢+_f0)|Mx1 SO7 (LU¢__f0)|le 20

Choose a decreasing sequence {zx}3>, C R so that z — 0 as k — co. As the 0-th
order coefficient of L, is negative on M,,, there is a unique solution uy, of the equa-

tion Lyuy = f, in CM,, satisfying ug| .

=0 and uk‘ ) =z1%%¢. By a stan-
OM.

ER xq

dard diagonalization procedure we can find a subsequence of {us} which converges
to some u, € CP(M,,) N CY¢(M,,). The scaling estimates of Lemma 1.1 near
the boundary give u, € C’,‘j‘_g i L (Mg, ). This proves existence of a solution in the
appropriate space, uniqueness follows from the maximum principle. It follows that
L, is an isomorphism between {u € Ck+2+/\(M K u|5Mz =9} and Ck+/\( -

Consequently L is an isomorphism between {u € C,?fQJFA(Mm) tulgy =t} and
zy

C’g‘_ﬁ\ (M,,). Now the existence of a regularity interval with oy = py follows from
point 1 of Proposition 1.2. The fact that (u_,us) is a strong regularity interval
follows by construction from the form of the barriers ¢4.

To prove point 2, note that if Lu = 0 in M and u = O(xz#-1¢) for some
€ > 0, then it follows by the definition of a regularity interval and by point 1 of this
Theorem that u = O(z#*+~¢) for any € > 0. As py > 0 by hypothesis, it follows
that u goes to zero at M, and then v = 0 by the maximum principle. Also note
that there exists a constant C' such that the functions

: 1
¢+ = +£C min (1, Cz*(1+1n x)ﬁ) £l oo

are (weak) super— and sub-solutions of (2.3). The result follows by similar argu-
ments as in the proof of point 1. O
What has been said so far can be summarized in the following;:

PROPOSITION 2.2. Let g € Cyi242(M) and let L be as in (2.1). Then L is a
geometric elliptic operator in the sense of Chapter 4. Moreover L is of the form
(2.1)-(2.4) with (u—, ps) = (—1,n), and L has a strong regularity interval (a_, 1)
for Cgﬁ\, with ax = pi1. The same holds for g € Mg, y, € > 0.

Proposition 2.2 shows that we can use Theorems 1.3 and 2.1 to obtain tangential
regularity of solutions w of the linearized counterpart of eq. (1.1) whenever the
metric and the source f are tangentially regular. Similarly it follows that Theorems
2.6, 2.9 and 2.10 can be applied to give information about the classical regularity
of the solutions to equation (2.3):
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COROLLARY 2.3. Let M be compact and assume that the hypotheses of The-
orem 2.1 hold. Assume further that L € OPg,k“( 1) is elliptic in a standard sense

in CM,,, and that L is of the form (2.3). Consider the equation (2.3) with
f€x%Cryr(M), o>, u=O(z" 1), €>0.
Then there exists o € (0, 1) such that the following results hold:

((i)) Let a < py and let £y € Ny be the largest integer such that a+£o < jiy.
(@) a+k<py = wen_ gz " Crriyo(M).
(b) k=by+ky = we m?:0$a71 C€0+i+a|k0 (M).

((ii)) Let @ < pg, py —a € No. If kK > py —a + 1, then there exists

Ulog S ﬂé:"o_a+2x“+_i C]C,(M+,a)+i+)\(M) such that
U — Ulog log x € ﬂ?zoaca_ick+i+g(]\71) .

If wiog|ans = 0, then weg = 0.
((iii)) Let oo > py, suppose that k > 1, and let £y € Ny be the largest integer
such that py + £y < a.
(a) If py+k < aor if a—puy € N(or both) = € NZ_ 2"+ Criire(M).

(b) k>l = wue m?:ox#fiicéoﬂtolk*@o (M).
(c) If u = o(z"+) and if k > ¢, where £ is the smallest integer such

that ¢ > a — py, then
0+2  a—i v
u€ MLy a® ' Ch gy (M).
The above results provide rather detailed information about the linear coun-
terpart of eq. (1.1).
3. Existence of solutions of the non—linear problem

In order to prove existence of solutions to equation (1.1) we will first consider
a somewhat more general class of equations.

ProrosITION 3.1. Consider the equation for a scalar function u
Agu+ X (u) + Fly,u) =0, (3.1)

where § = x72g with x a defining function for M, g a (locally) C; metric on M, X
a continuous vector field on M, F(y,u) a continuous function in both arguments.
Suppose that

((i)) There exists a function ug € Co(M)NCY(M) and constants zg, Cy, o >
0 such that

VO<z <z |AgU0+X(U0)|SClxa.

We shall moreover require that dug € Cgil(Mzo).
((ii)) There exist constants C, L satisfying C— < uo|n,, < C4 such that

VyEMa F(yac—)z()? F(y,0+)§0,
VZl,ZQ € [C_,C+}, (/S M |F(y,z1) —F(y,22)| < L|Zl _22|'

((iii)) There exist constants Cy > 0, 1 > 0 and [ satisfying 0 < § < a such
that for all 0 < 2 < 21 we have

AP + X (2P) < —Coa® .



84 7. THE LICHNEROWICZ EQUATION.

((iv)) There exists a constant C3 > 0 such that for 0 < z < x( we have
w<u<Cy = F(y,u)<Csax®,
C_<u<wu = F(y,u)>—-Csz“.

Then there exists a solution u € Wj**?(M) for any 1 < p < oo of equation (3.1)

satisfying

C_ <u<C(Cy, |u — o] " < Oy’ (3.2)

zQ

for some constant Cj.

REMARKS: 1. The solution u needs not be unique.

2. Note that point (iv) above will be satisfied if |F'(y, uo)| < Csz® and if F'(y, u)
is monotonously decreasing in u for 0 < x < g and C_ < u < Cy.

PROOF: We shall show that there exist weak barriers ur € W,°%> (M), the
result then follows by a well known method using e.g. the monotone iteration
scheme (cf. e.g. [66, Theorem 2.3.1]). Let thus

uy = min(ug + Bx®,C),

u_ = max(ug — Bz?,C_),

with some constant B which shall be specified later. Let x4 = min(zg,z1). For
those z < z for which u, = ug + Bz” we have

Agug + X(ug) + F(y,ug) = Aguo + X(uo)
+B(Agx” + X (7)) + F(y,us)
< (01 + C3)J?a — BCQJ?B

(Cl +03)£Diiﬁ

Let us set By = max ( ron

, (C4 — min uo)ajjrﬁ); for all B > By we then
have
Agug + X(ug) + F(y,uq) <0.

Define T' to be that connected component of the set {ug + Bz = C,} which
intersects {0 < & < x4 }. By the definition of B, if B> B, wehave ' C {0 <z <
74 }. Increasing B if necessary, we can assume that D(ug + Bx?®) does not vanish
anywhere in {0 <z < x4} so that I" is a > submanifold of M. An integration by
parts calculation shows that u is a weak supersolution of equation (3.1). Similarly
one shows that increasing B if necessary u_ will be a weak subsolution of equation
(3.1) and the result follows. O

Existence of bounded solutions of (1.1) (with ¢ = 0) has been proved under
various conditions on (M, g) in [8, 9] and [6]. As far as existence of solutions of
(1.1) satistying (1.2) is concerned, we have the following theorem:

THEOREM 3.2. Let g € Mg ., be a metric on a compact manifold M with
boundary, 0 < ¢ € Cf, (M), 0<e<1, A€ (0,1), k > 0. There exists a solution
¢ of (1.1) such that

¢ —|Dxlg? € Ciioin(M). (3.3)

¢ is unique in the class of uniformly bounded, uniformly bounded away from zero,
locally C5 solutions of (1.1).
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REMARK: For ¢ = 0, it has been proved in [6, § 3] that, for g € Coo (M), the
condition z=(""2/2¢ —_ 51/ oo implies uniqueness. (Although the uniqueness
question is not discussed in [62] in the same context as in [6], it should be pointed
out that the a—priori estimate which is the key for the uniqueness proof of [6] has
also been obtained in [62].) It is not hard to see that this argument holds also
when ¢ € 2C (M), ¢ > 0. For ( =0 and g € Co(M) it has been announced
without proof in [59] that u is unique provided that the manifold M equipped
with the topology induced by the metric ¢*("~2)g is complete and is not a compact
manifold with boundary.

PrROOF: We may assume without loss of generality that \Dac|£27 = 1 in a neigh-
bourhood of M. The argument of the proof of theorem 3.4 of [6] shows that there
exists a function ¢; € C,g_Q_H\(M) satisfying 0 < C7 < ¢1 < (5 for some constants

4
C1,Cy > 0, and satisfying ¢ — 1 € Cj_,, (M), such that the metric #7> g has
4
constant scalar curvature equal to —n(n — 1). Replacing g by cbfj g we may with-
out loss of generality assume that R = R(§) = —n(n—1). Replacing ¢ by ¢¢; ' one
obtains an equation of the form (1.1) with possibly a different ¢ > 0. One readily
checks that the hypotheses of Proposition 3.1 are satisfied with ug =1, « = 8 = ¢,

C_ =1 and Cy — a sufficiently large positive constant. Further regularity than
that asserted by Proposition 3.1 follows by elliptic regularity and a scaling estimate
(Lemma 1.1).

To prove uniqueness, let ¢o be the solution constructed above and let ¢ be
any other solution bounded from above and bounded away from zero. Conformally
rescaling the metric we can choose a “conformal gauge” in which ¢o = 1. In this
gauge eq. (1.1) reads

R=-n(n—-1)+¢.
Here ¢ > 0 is an appropriately rescaled counterpart of the function ¢ of eq. (1.1).
The eq. satisfied by ¢ = ¢1/¢2 is eq. (1.1) with R as above, so that we have
4 n — ]. K n+2
A= D) Ago+ €67~ 1)+ nln - 1)(6 - 075) = 0. (3.4

Set
o= 1]\r}lf¢>.

Suppose first that « is attained at some point p € M, in that case the maximum
principle shows that « cannot be smaller than one. Suppose next that « is not
attained on M, then by [42, Theorem 3.5] there exists a sequence of points p, € M,
pr — p € OM, such that 3

¢(pr) — o, liminf Ag é(pi) 2 0.
Evaluating eq. (3.4) at px and passing to the limit k& — oo one obtains
Cla™=1) +nn-1)(a- a%;) <0.
It follows again that o cannot be smaller than one, so that we must have

i >1.
1£1/If¢_1

3Here liminf is taken in R U {£o0}.
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One similarly shows that
supop <1,
M

so that ¢1 = ¢ follows. O

4. Regularity at the boundary of the solutions

4.1. Polyhomogeneous or smooth backgrounds. The result that follows
establishes polyhomogeneity for a class of semilinear equations when the metric
is polyhomogeneous and when a polyhomogeneous approximate solution can be
found.

THEOREM 4.1. Let g be a polyhomogeneous metric on M (¢f. Definition 2.9)

and suppose that u € C}°°(M) is a solution to the scalar equation

Aju+ zX (u) + F(z,u) =0, (4.1)

where X is a vector field on M satisfying X —pDx € Arbe N C’g(M) for some G > 0
and p € R. Let ug € APP® N Cy(M) and assume that there exists ¢ € R such that

9F (11, u0) — q|Dx|2 € CJ (M),

q<(n_Tl_p)27 /.t+>0,

n—1—p n—1—p 2
=—+ — —q. 4.2
pe =" ("=57") - (1.2

Further assume that for all i we have (0% F)(x,ug) € Co(M) N AP and that
for all 7,j and all multiindices p the functions (xdx)'d4d}F are continuous in a
neighbourhood of the graph of ug in M,, x R. If

where

Agug + X (ug) + F(z,ug) € CF° (M), o > max(0, u_),
u—ug € C§(M), a > max(0, p_),

then
u € AP"8 N Cy(M,,) .

REMARKS:

((1)) The condition on the function F' will be satisfied if e.g. F is a rational
function of u with coefficients which are polyhomogeneous, appropri-
ately bounded functions of x.

((ii)) Let L and M satisfy the conditions of Corollary 2.3 and consider the
equation

Lu = F(y,u), (4.3)

with F' as considered above. Assumer further that the coefficients a,, of
L as defined in eq. (1.3) are bounded polyhomogeneous functions. Then
we can define a metric g and a vector field X on M so that equation
(4.3) takes the form (4.1), with all the hypotheses of Theorem 4.1 being
satisfied.
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PROOF: Decreasing « if necessary without loss of generality we may assume
a < py. By a scaling argument one easily shows that u — ug € Ciii“(""‘*")(M).
By Theorem 2.1 the linearized equation has a regularity interval («a_,ay) with
a4 = py given by (4.2), and the result follows from Proposition 1.4 and Theorem
1.1. O

COROLLARY 4.2. Let g be a polyhomogeneous metric on a compact manifold
with boundary M, let 0 < ¢ € APh N C§(M), € > 0. There exists a solution ¢ of
(1.1) such that

n—1
¢ —|Dx|g® € AP"ENC5(M) .
The solution ¢ is unique in the class of uniformly bounded, uniformly bounded
away from zero, locally C5 solutions of (1.1).

PrOOF: Existence and uniqueness follows from Theorem 3.2; regularity from
n—1

Theorem 4.1 — the appropriate approximate solution is ¢ = |Dx|4? . O

When g € Co (M), the solution ¢ of (1.1) given by Corollary 4.2 will be
polyhomogeneous rather than smooth—up-to-boundary in general, ¢f. Appendix
A and also [5, 4].

4.2. Background metrics with finite differentiability at the bound-
ary. In the remainder of this chapter we shall prove various results concerning the
regularity at the boundary of the solution of the Lichnerowicz equation, when finite
differentiability only of the metric is assumed. As intermediate steps in the proof
of the final results we shall need to prove various weighted regularity results. Our
next result shows tangential regularity of the solutions of (1.1), under hypotheses
weaker than those of Theorem 4.1. It is convenient to introduce first the following
space of metrics:

DEFINITION 4.3. We shall say that a metric g is of M,§+/\77,L+H class, 0 < e <1,
k > max(1,m), if g € Mg (cf. Definition 2.1), g;; € Og+)\7m+u’ and if for |y| =1

we have x9)g € Cf 1\ nin(k—1,m)+p (¢f (24)).
It can be noted that for g € Mg, |,y .., we have Az € OPZ, CIf

k4, min(k,m)+pu

9 € Mg o,y i, then the functions £ of eq. (1.5) and S of eq. (1.7) satisty
S € Cli—i—)\,m—&-,u 9 5 + n|Dx|Z € CIZ—Q—A,WH—;L .

THEOREM 4.4 (Tangential regularity). Let g € Mg 5.5 1,0 0 S CECELy s

e€(0,1], A€ (0,1), p €[0,1], 1 <m < k+ 2. Then the solution ¢ of (1.1) given
by Theorem 3.2 satisfies

¢ — |D$|§;n_2)/2 € CZ+2+A,m+u' (M),
with ¢/ = 0 if 4 = 0, while if g > 0 then g’ is an arbitrary number in [0, ).

PrROOF: The proof is a bootstrap-commutation argument similar to that of
Theorem 1.3. For 1 < i < m let X; = XA (v) 5%, X! € Coo(OM) be smooth

Do
vector fields on My, . (1.7) implies that X;(u) satisfies the equation
_ OF
LX) = [8g+e- G| Xilw) =i
OF
pi = Xi(S) = Xi(Qu+[Ag, XiJu+ X' ——

toouA T
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From v € Cf ,,, , it follows that

oF . .
§— u T n|Dxl; € Ci s, pi € Ch_1qx-

By Theorem 2.1 (—1,n) is a regularity interval for Cg, , for L, and from X;(u) €
C’z;h)\ and from scaling estimates one obtains X;(u) € Cfy, thusu € Cf o,y ;-
For 0 < p <1 the inclusion Cf 51y 1 C Ciyopy o4y implies u € Cf oy o4y, which

in turn yields

oF 9
§— Ju +n|Dxl; € Coyrorps  Pi € Choiino4p-
The claim that v € Cf 5,44, follows by a difference quotient argument as in
the proof of Theorem 1.3, because by Proposition 2.2 (—1,n) is a strong regularity
interval for L. For m > 1 the result follows by induction as in Theorem 1.3 from

the equation
I/Xl e Xl(u) = [I_/,Xl cee Xzfl]Xz(UJ + Xl ce Xiflpi .

O
Our next result proves classical regularity at the boundary of solutions of semi-
linear equations under appropriate conditions — this is the main result of this chapter
or, indeed, of this paper. To avoid a tedious but otherwise straightforward discus-
sion of various possibilities we only consider a, s € N, o < py and py = ay —
these conditions hold in our applications to the general relativistic constraint equa-
tions. Similar results can be obtained without those restrictions using the same
arguments. Let us emphasize that the following result holds for semilinear systems,
and we are not assuming that (4.4) is a scalar equation.

THEOREM 4.5 (Classical boundary regularity for semilinear systems). Let (a_, a4),
ay > 0, be a strong regularity interval for C, , (M) for a geometric elliptic oper-
ator L € OPékH(M), A€ (0,1). Let L be of the form (2.1)—(2.4) and assume that

p+ = ag. Suppose that u € C2 (M), let S € 29Cy4A(M) for some o > a_, and
assume further that
o, iy €N, ki=puy —a>0.

Let u € CX¢(M), u = O(z“- 7€), a_ + € > 0, € > 0, solve the semilinear system of
equations

Lu=F(y,u)+ S, F(y,0) = 0sF(y, s) _0:0. (4.4)

Let N be the smallest integer such that Now > k. Assume that F(y, s) € Cryx(M x
R) and that for all 0 < i < N+k+2 and for s € R satisfying |s| < K =sup,,, [u’|
there are constants C; such that
Then there exists ¢ > 0 such that
(i) If a+k < py then u € N2 (2 "Cppito(My,).
(i) If « + k > py then
u € m?:oxa_i py—a—ltitolk—(py—a—1) (Mxo) .

(If &« = p4, the case i = 0 should be excluded in the equation above.)
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Moreover for ao+ k > py + 1 there exist functions u;, i = 1,... , N,
such that u = Z;‘\?:o ujlog’ (), with
ug € N2z Chryivo(My,), (4.6)
and for j > 1,
uj € NS/ T Oy pia (M) - (4.7)

Here N is the smallest integer such that N > (k + 2)/puy. If, finally,

u1|8M =0, then u € N2_y2* ‘Chiiro(My,)-

REMARKS:

((i)) We have imposed the somewhat unnatural condition (4.5) on F because
it is satisfied by our problem at hand, namely the general relativistic
constraint equations. A similar but somewhat worse result as far as
differentiability of the functions u; is concerned can be established by
the same methods assuming only that F(y, s) € Cria(M x R).

((ii)) For N> a > pu4 and k > 1, and assuming that the remaining hypothe-

ses of Theorem 4.5 remain unchanged, we obtain u € N7_y2"+ " Clyito (My, )-

Similarly, for N Z a > py and k > 1 the regularity of the solution of the
non—linear problem will be the same as the for the solution of the linear
problem with the corresponding value of a, ¢f. Theorem 2.9 and the
remarks following that theorem. Clearly similar results can be obtained
under the hypotheses of Theorem 2.11.

PROOF: In this proof, o € (0,1) will be a constant which may vary from line

to line. Let F,(z) = 07" F(xz,s)| . From Taylor’s Theorem we obtain

s=0
N
_ Fn(y) m N+1
F(y,S) - 2_2 ml sT+s FR(yaS)a (48)
with F,, € Cxin(M) and Fr € Cpia(M x R). Clearly, if v € C£+A,Z+U(M) for
{+ 0 <k+ A then vV T Fp(z,v) € C,E{Z;?fa.

Let v be a function of the form given in point (ii) of the Theorem and satisfying

(4.6)—(4.7) with 0 = A. Then from (4.8) we get

N ~ .

Fly,v) = ) Fj(y)log’(z) +¢.

§=0
From (4.6) with i = 0 and (4.7) with i = k; we obtain { € Cyf{f2,\ (M) and
Fy € 22*Cryr(M). Similarly the choice i = 0 in (4.7) gives Fj € 27"+ Cy_g, 12 (M)
for j > 1. Expressions of the form F(y,v1 + v2) — F(y,v1) can be analyzed in
a similar way. Finally we note that if v; is of the form given in point (ii) and
’02605 with £ + o0 < k + A, then

Ao
F(y,v1 +v2) — Fy,v1) € C;?:,\B,Hg’ (4.9)

which is easily seen by the mean value Theorem.
After those preliminary remarks, let us by induction construct an approximate
solution @ of eq. (4.4). Set w_; = 0 and let wy € Nien, 2% “Ciyitr (M) be given

by Lemma 2.5 so that Lwy — S € Cl]:i?fix N C,’:izi;’ﬁo, Bo=0or By = 1. By
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interpolation for # € No we have Cyf {7 (M) N CEfdtM (M) — Cffeds (M)
for some o > 0.

Suppose then that for some m < N we have found functions w;, i = —1,...,m,
of the form

N
w; = Z w; jlog? (x), (4.10)
3=0
with coefficients w; ; satisfying (4.6)—(4.7). We shall moreover require that w; —
wi_q € C’,gf;l‘i. Then a function wy,1 of the form (4.10) with w11 — Wy, €
C,i:n;f;\a can be constructed as a solution of the equation

L(wmi1 — wm) — (F(y,wm) — F(y, wm—1)) € Clljiggia(M) )

by using the argument of the proof of Lemma 2.5. This completes the induction.
Note that for oo + k < py we will have w; ; = 0 for j > 1.
Letting 4 = wy, we have

§:=F(y,a)+ 5 —La e CFis, . (4.11)

Setting 4 = u — 4 we obtain
L(@) = F(y,a+a) - F(y,a) +§, € Citaty . (4.12)

We have u € C’g"JrE, so that decreasing e if necessary we obtain 4 € Cg"JrE.

Equations (4.9) and (4.12) give La € C§. By point (i) of Lemma 1.1 and the

weighted Sobolev embedding we obtain @ € Cla_;; °. Tterating this argument using

point (ii) of Lemma 1.1 and (4.9) gives @ € C},,75,. We have:

LEMMA 4.6. For 0 < ¢ <k and v < min(k — ¢+ « + o, u4) we have
€ Clioinito-
Proof: The argument below is rather similar to that of Lemma 1.3. Some
care, however, must be taken because of the finite degree of differentiability of the
functions here. Let £ > 0, choose 3 so that 0 < 8 < a_ +¢€, < py and 206 < a,
and let o € (0,1) satisfy £+ 0 < k+ A. Let § € (0,5) and K € N be chosen so that
KO =/{¢+o0. Let ¢,k =0,...,K be any increasing sequence of numbers such that
€0 =0, and ¢, < 0. Note that for 0 < ¢ < k eq. (4.11) implies that

k—{l+a+o
e Cinito -

We will argue by induction. Assume that @ € C,f 2 n6—c,; we have shown that this
holds with k = 0. Then (4.9) and (4.12) imply

- 26 261
La € Oy y o—er MO kbt1—e, -

Lemma 2.2 gives
~ 28—(1-7)
Lt € Cli s iosi—r—ensr -
for any 7 € (0,1). Choosing 7 =1 — 6 we get

~ B
Lu € Cp iy (or1)0—epss

and, increasing slightly €x41, Theorem 1.3 gives

~ B
u €< Ck+2+)\,(n+1)976,<+1 :
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This completes the induction step.

We have thus shown that @ € le+2+>\,é+cr with some 5 > 0. An iterative
argument based on (4.9), (4.12) and Theorem 1.3 completes the proof. O

Returning to the proof of Theorem 4.5, suppose first that o + k < py. In this
case Lemma 4.6 with ¢ = 0 gives @ € C,’gi;‘j;oJrg(Mm), and the result follows from
Proposition 2.2.

In the case a+k > p4 some more work is needed. If k = pu4 —a our conclusion
follows again from Lemma 4.6 and Proposition 2.2. (Note that in this case our
result is weaker than for k > u, — o, ¢f. point (ii).) For k > 0 set f = L()
and rewrite equation (4.12) in the form (2.46). Then arguing as in the proof of

Theorem 2.9 we find, using Lemma 2.7, a function ¢ € Nien, 2+ " Clyiza(M)

with Ly € C:IgBIZ(M) and @ = u — @ — ¢ = o(z#+). Now we can change wy as
defined above to wq +1/3 and repeat the induction argument described previously to
obtain a new approximate solution, still denoted @, of the form (4.10) and satisfying
(4.11). A direct analysis of the identity (2.47) of the proof of Theorem 2.9 gives @& =

u—1u € CZ:[;TU’kf(MiaHU (My,). We wish to show that in fact we must have @ €

C’:_tgj;mrg (My,). For suppose first that k& < p. In this case Lu € Cfi?,gia (M)

by (4.9), and Lemma 2.8 with 3 = o, m = £ = k yields @ € C} 1977 (My,).

To handle the case k > py, suppose that o € CfingngJ(Mmo) with some 8 € N
satisfying 8 < k+ a and some £ > m := min(k+ o — 3,«). Then (4.9) and Lemma

2.8 yield & € C,’f_tﬁigé_m +o(Mz,). Applying this argument repeatedly leads indeed

after a finite number of steps to @ € C,fi;‘:‘(go+g(Mxo). The proof of point (ii) is
completed by Proposition 2.2. O

The classical regularity up—to—boundary of solutions of the Lichnerowicz equa-
tion up to the threshold n — 1 = dim M — 1 is a straightforward corollary of the

above:

THEOREM 4.7 (Boundary regularity for solutions of the Lichnerowicz equation).
Let M be an n—dimensional manifold with boundary with M — compact. Let

g € Ciy242(M), suppose that ¢ > 0 and suppose moreover that ¢ € Ckra1x(M) N

CH(M), or ¢ € 2 Cry14x(M), or ¢ € 22Cryn(M), A € (0,1), k € Ng. There exists
o € (0,1) such that the solution ¢ of (1.1) given by Theorem 3.2 satisfies

k+2<n-1 = ¢€Ok+2+U(M)7
k+2=n+4+k, k1 €eNy = ¢€Cn71+a|k1+1(M)~

Moreover in the case k42 > n there exist functions ¢; € N0 " Chraniira (M),
j=1,...,N, such that

N
¢ — Z¢i logi T € Ck+2+[,(]\7[) .
i=1

Here N is the smallest integer such that N > (k + 2)/n. If finally ¢1]|oa = 0, then

¢ € Crgaqo(M).

REMARK: The results of Theorem 4.7 are optimal (except perhaps for the
modulus of Holder continuity o which we leave unspecified), as the z™logz term
generically arises in the solution of (1.1), ¢f. Appendix A. The reader is also
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referred to [6, 5] for an analysis under which conditions on the geometry it holds
that ¢1]aas = 0; in these references dim M = 3 is assumed.



APPENDIX A

Genericity of log-terms.

In this section we shall show that for generic “background fields”, in a sense
to be made precise in the statements of Proposition 1.1 and Theorems 2.2, 2.3, the
Cauchy data constructed by the conformal method will “pick-up” log-terms, even
though the background fields are smooth up to boundary. The results of this section
are somewhat related to those of [5]. In [5] rather more geometric results can be
found; on the other hand, the proofs and the discussion here are much simpler.

To avoid a tedious differentiability—chase we have stated all the results in a
C setting. However, the calculations presented here carry immediately over to
the finite differentiability case. Some of the equations below can be somewhat
simplified if one makes use of the “almost Gaussian coordinates” of Appendix B.

Throughout this section M is a manifold with boundary with M — compact,
and with dim M > 3. In some results we shall specialize to the physically relevant
case n = 3, but this condition is not assumed unless specified otherwise. The reader
is referred to Chapter 3 for any notation which is not defined here.

Let us start with the vector constraint equation. As explained at the beginning
of Chapter 6, there are at least two methods of constructing solutions to this equa-
tion. Here we shall analyze in detail the method described in section 2; assuming
smoothness of the background fields the method of section 3 gives equivalent re-
sults. Note, however, that the discussion of decay rates of various fields of section
2 has been tailored to fit the construction of section 3. This explains the difference
between the decay rates of section 2 and those of section 1 below.

1. The vector constraint equation

~ PROPOSITION 1.1. Let g € Coo (M), denote by igys the embedding igas : OM -
M, and by I'c_anr) (i, T>M) the space of smooth sections of the bundle i},,7 M
over M obtained by pull-back by ign of the bundle T?M of two-contravariant

tensors over M, suppose that o = —2 or a = —1. For A;; € Co(M) let X be any
solution of the equation

1 .y 9 g g
D; LY = §Di <D’Xj +D1X1Dk.ng”+xaA”> =0 (L.1)
n
given by Theorem 2.8, point 3 thus
L9 =2 LY +loga L, , LY, Ly, € Coo(M) . (1.2)

((1)) Let @ = —1. There exists a closed subspace A C T'c__(anr) (i, TM)
of finite dimension not larger than (dim 0M +1)(dim M +2)/2 = n(n+

1)/2 such that for all A¥ satisfying D;z (|Dx\§Aij—kaijAik) (0,v) &
A we have N
Ly, (0,v) #0.

93
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((ii)) Let @ = —2. For any A e ch(aM)(igMTz M) and ¢ € Coo (OM) there
exists a closed subspace A g » C NGRS (%, TM), of finite dimension
not larger than (dim M + 1)(dim M + 2)/2, such that for A% satis-

fying AY(0,v) = A¥(v), D;x Djx%:((),v) =1 and Dix<|Dx 385‘: —

kaijag‘—:)(O,v) ¢ Ag , we have

L (0,0) 0.

Moreover for all A;; for which a solution with Lfgg(O, v) # 0 exists, there exists

no solution of (1.1) satisfying
X € x>tt (C’OO(M) + xlongoo(]\Zf)> ,
such that =% LYW € C_,(M).

PROOF: Uniqueness up to the addition of a smooth (up to boundary) solution
of the homogeneous equation follows from Theorem 2.8, thus the only thing to show
is the non-vanishing of Lfgg. Let thus

a=-1 X = Xo+logzXig, (1.3)
a= -2 X = 27'X_,+ log 2 Xi0g , (1.4)

Xo, X1, Xiog € Coo(M). X solves the equation

Ap, X7 = §Di (DZXJ +D'X'— Z D XxF g”)
n
= zolzi, (1.5)
with

77 = —x~ ! Dy(z* AY) = — (aA™ + 2D; A7) . (1.6)

Inserting (1.3) in (1.5) one finds, with m = |Dz[;' Dz (thus m is the inward
pointing unit normal to OM),

j | Dal; ; n—2 , B
a=-1 AL,Q X = - 2x2g leog + n g(vaIOg) m’ | +0 (.’E 1) )
: Dx|? ; —9 '
a=-2 Apg X7 = | m3|9 {XJ1+” g(m,Xl)m]}(Ovv)
|D33|52; j -2 ) .
- 252 Xlog - g(valog) m’ + Ll(Xfl) + O(l’ ) s

where L, is a homogeneous linear first order differential operator which has the
property that L;(X_1)(0,v) does not depend upon 9,X_1(0,v). For a = —1 we
thus must have (c¢f. the beginning of Chapter 3 for conventions on coordinate sys-
tems)

, _9 , .
<X1]0g + nTg(m’Xlog) m]> (0,v) = — (|D$|;2 Am]) (0,v),

which can be algebraically solved for Xl{)g(O,v) in terms of A%/(0,v), and which

shows that X7

1Og(O,v) runs over ch(aM)(igMTM) as A%7(0,v) does. For a = —2
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one obtains

(X{l + ”7*2 g(m, X _1) mj> (0,v) = (|D=[,;? A7) (0,v), (1.7)

(Xﬂ)g + "7_2 g(m, X) mj) (0,v) — (|Da:|g—2 8ij) (0,0) + F ,(1.8)

ox
F = (|Dx|;? [D; A¥ — 8, A™]) (0,v) — L1(X_1)(0,v). (1.9)

From (1.7) one can algebraically determine X7 | (0,v) in terms of A%7(0, v) and since

(Dlv AY — %:) (0,v) depends upon A%(0,v) and its tangential derivatives only,
one finds that F in (1.8) is uniquely determined by A%(0,v); (1.8) implies then
that for any fixed A”(0,v) the vector field X, (0,v) runs over Leonn) (i3, TM)
QA"

ox

as (0,v) does. Now a simple calculation shows that

2L, = D' X,

o 92 g
+ D7 Xiog = — Dy Xig 97,
and to finish the proof we have to show that the vanishing of L%

log (0, v) implies that
X

is of rather special form. Let h;; be the induced metric on OM,

J
log

hij = gij — mim , (1.10)
let D; denote the covariant Riemannian derivative operator of the metric h;j, set
Bi = m? Djm;. Setting

d):Xliog mi, Yi :Xliog 7¢mi7 (111)
one finds
2
2mym; LY, = = [(n— 1) (m* D — Y*Bi) —= DiY* + 67
n
(1.12)
2hjm; L), = DpY' + Dl + N YF 4 ¢, (1.13)
y 1 3 o y 2 B
i kel ke 11 7 i k11
Z(hkh%Llog + mmkm@ Llogh’ J) =D'YJ + DIY" — m DkY h"
, 1 3
—2¢ [ AV — —— \hY 1.14
o (Wi L) (1.14)
where \;; is the extrinsic curvature of OM (\;; = —hfthkmg), A= h¥ )\, and

DY = him" D Y7
For dim OM > 3 eq. (1.14) shows that the vanishing of L{“fg
termined system of equations for Xflog —kal’f)gmi, and a straightforward repetition
of the argument which shows that the space of conformal Killing vectors cannot
exceed (dim OM + 1)(dim OM + 2)/2 yields the same upper bound for the dimen-
sion of the space of Y’s for which we have Lfg) g =0. In the physically relevant case
dim OM = 2, the operator

h};hf,: leads to an overde-

Y! — DY) 4 DIy — — DY R
n—

which maps vectors to symmetric traceless tensors) is elliptic, with (as is we
hich tors t tric traceless t is ellipti ith i 11
known)
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((1)) trivial kernel if g(OM) > 1, where g(OM) is the genus of IM;
((ii)) two dimensional kernel if OM =~ ST x S*;
((iil)) six dimensional kernel if M ~ S2.

It follows again that the condition Lﬁfg = 0 will hold for at most a (dimdoM +
1)(dim OM + 2)/2 dimensional space of Y’s, and the result follows. O
For the proof of Theorem 2.2 we shall need the following proposition:

PROPOSITION 1.2. Let m; be the unit normal to OM, define 7 C I'c_ (anr) (igMng\Z)
as the space of tensors A%Y(v) over OM satisfying m;A” = g;; A = 0, let P be
the projection on 7 : (PA)Y = hiyhi, (A — k™" Ay h*/(n — 1)), (Here h is
the metric induced by g on M, cf. eq. (1.10).) For any A, A € T there exists a

transverse traceless tensor field LY € 272C, (M) + Inz Cs (M) such that

o

Li(z,v) = A@az 2+ LY (v)z™' +O(lnz), (1.15)
(PL_1)¥ = A9, (1.16)
REMARKS:

(()) Note that for a transverse traceless tensor of the form (1.15) the con-

dition A (v) € T is necessary.

((ii)) The question of existence of transverse traceless tensors L € 2= C, (M),
a = 1,2, such that 2*L% |55, # 0 is considered in [5], and is shown to
be related to the vanishing of the space—time Weyl tensor at OM .

PRrROOF: Let A;; € Coo (M), we have
Di(z72AY)(z,v) = =207 A%(0,v) + 2~ [D; A" (z,v) — 22~ (A" (z,v) — A™(0,v))] ,
(1.17)
where A" = DjzAY. Let A¥(0,v) = ﬁij(vg, so that A%/(0,v) = 0. Taylor
expanding there exist R/ € Coo (M), S7 € Coo (M) such that
A% (z,v) = 9,A™(0,v)x + %8%/1”(0, v)a? + R
0, A% (z,0) = 0,A™(0,v) + 02A%(0,v)x + 2257 .

Define
“TA” = Dy A% — 0, A" ;

(1.17) can be rewritten as
Di(z72AY)(z,v) = 272 [-0, A7 (0,v) + (“TA” + DAAAj) (z,v)] + 57 — 2R
If we choose A% (z,v) so that
0,4%(0,0) = (T A” + DaA 7Y (0,0) |
P, AY(0,v) = AY(v),
we obtain
Di(z72AY) € 27 Coo (M),

therefore by Theorem 2.8 there exists a solution X € Coo(M) + xln2Cs (M) of
equation (1.1). O
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2. The coupled system

In the remainder of this section we shall restrict our considerations to n =
dim M = 3. Before analysing the presence or absence of log-terms in the solutions
of the Lichnerowicz equation, recall that we are mainly interested in conformal
classes of “background fields” [(g, L)], where L is a TT-tensor, in which the pair
(g, L) is identified with the pair (¢2g,~>L) for any positive function ¢ € Co (M):
(g9,L) and (¥?g,1~°L) lead to the same solution of the constraint equations. We
shall assume that L € 272C. (M) +log xCs (M), as forced upon us by Proposition
1.1 in generic situations, it should be stressed that the log terms in L will not affect
the conclusion of Theorem 2.2, because they do not affect the z3logz terms in the
expansion of solutions of the Lichnerowicz equation.

LEMMA 2.1. Let z,2; € Co(M) be two defining functions for M and let
LY be a transverse traceless tensor for the metric g. Suppose that (gij,Lij ) =
(1/149%71/)_10[/?), g€ Cox(M), L € 272Co(M)+Inz Cs (M), with some bounded
positive function ¢ € C5(M), ¥ uniformly bounded away from zero. Set
gy =g, Gy =artely, LY=aLY, LY =aiLY.
Let ¢, ¢1 be uniformly bounded, locally C5 solutions of
8A;¢ — Ro + [L|3¢™" — 66" =0
8Az,¢1 — Rign + |L1|3, 67" — 647 =0
¢ has a 2% log x term in the asymptotic expansion at M if and only if ¢, has one.

PrROOF: By the uniqueness part of Theorem 1.1 we have

X

1 =1 (); b. (2.1)

T

Since ;- isin Coo (M), the result follows by comparing coefficients in an asymptotic
expansion of both sides of (2.1). O

THEOREM 2.2. Let X be the collection of pairs (g, L), where g € Coo (M) is a

Riemannian metric and LY € 1720 (M) + logz Cso (M) is transverse traceless.

((i)) The subset X of X consisting of pairs for which the log terms in the
expansion of the solutions of the Lichnerowicz equation do not vanish

is open and dense in the C (M) topology on X.
((ii)) The set X = X\X is an infinite dimensional closed subspace of X.

PrOOF: Choose some defining function x for 9M, by Lemma 2.1 the vanishing
or not of the log terms does not depend upon this choice. Let g;; = |Da:\§gij, in
the metric g;; we have gz ;x j = 1, set g;; = x~2g;;. Let ¢ be the unique solution
of

8A;0 — Ro+ L2~ — 64" =0 (2.2)
satisfying ¢|onr = 1. By the results of Chapter 7 there exist ¢1, ¢2, Plog € Coc(OM)
such that

¢ —1— 12 — ¢oa” — Progr’logz € C37¢, > 0. (2.3)
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Let m' = gx j, hij = gij — mimy, let Ai; be the extrinsic curvature (in the metric
gij) of the sets & = const., A = k" \;;, define the expansion functions Ay, etc., by

Mz,v) = M) + 21 (v) + 22X (v) + O(z?) (2.4)
5 p AU@w)  A9w)
\Dm|g5L3(x,v) = —a2 + — +O(Inz) (2.5)
R(G)(x,v) = Ro(v)+aRi(v)+O0(z?), (2.6)
F*Ma,w) = §0,0) + 25" (v) + O(a?) (2.7)
where R(g) is the scalar curvature of the metric g;;. Inserting (2.3)-(2.7) in (2.2)

one finds with the help of a simple REDUCE code

p1 = Xo/8, (2.8)
$2(v) = i (gijgkz)(oaU);lij(v);lje(v) + % [AM(v) = Ro(v) + (Diz D" X0)(0,v)]
23 o,
~384 Ag(v), (2.9)
Gog(v) =~ (3:0)(0,0) [AR @A (0) + A AT @) Ro(0)] + (), (2.10)
W(v) = {312 [y~ 130 + 530k — R — Ao + 0% — AT 33

It follows from (2.10)-(2.11) that the condition ¢,y = 0 defines a closed subspace
of the set of all (g, L), thus X is an open subset.

Suppose that (g, L) € X, thus ¢jos = 0. By Proposition 1.2 jzlij(v) and BY =
B};Bz (fl’d —hmm A, R ) can assume arbitrary values satisfying /01 i m; = B m; =
l_zijfolij = h;jBY = 0, and one can thus find a sequence (g,LZ]) —k—ool(g, L)
such that ¢yoe(v) # 0 by choosing A © and B,ij suitably, and the theorem follows.O

In Theorem 2.2 it was essential that the space of T'T-tensors considered included
those for which (22L%)|gps # 0. When 22L% |55 = 0 we have the following:

THEOREM 2.3. Let g € Coo(M) be a Riemannian metric, and let L be a
transverse traceless tensor with respect to g. Consider the sets X,, a = 1,2,3 of
pairs (g, L) such that

X : L € 27'Coo(M)+logzCy (M)
Xs: L € COO(M)
X3 L = 0.

((i)) The set )2(“ a = 1,2,3, of pairs (g, L) for which the solution of the
Lichnerowicz equation has a z3log = term is open and dense in X,.

((ii)) In each case the sets X, = X,\X, are closed infinite dimensional
subsets of X,.

REMARK: Note that for (¢, L) € X,, a = 2,3, the solution ¢ of the Lichnerowicz
equation is smooth. On the other hand for generic (g, L) € X7, ¢ is expected to be
C4(M) but not C5(M) because of x5 log z terms coming from |L\§. The blow up of
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the fifth derivatives is in this case mild enough so that one gets ¢ € H5(M, g,dp,),
zp 1% e Hg(M, g,dpg).

PRrROOF: In the notation of the proof of Theorem 2.2, let D; be the Riemannian
connection of the metric }_zij = gij — mym;. A 241 decomposition calculation gives
(note that m*D;m’ = 0 because m;dx’ = dx)

R=2m"Did— Ny, — N2 4+ R, (2.12)

A

where R is the curvature scalar of h g B, so that if the coordinates v are chosen to

satisfy g*4 = 0 one finds

_ OR _
R1 = —_— = mka-R
ox lom

= (QﬁlimjDiDj;\ — 25\ijﬁlkbk;\ij - 2/_\771ka5\ + mkaﬁ) + 2/\Zk>\z>\]k onr

’8M

and (2.10) gives

1 . -

dog(v) = o5 [—2X9m" Dy Aij + AomF DA (0,0) + 9(v), (2.13)

Here ¢ depends only upon 9ij onr’ 65;j 5 and their derivatives in directions tan-
M M

gent to M. Suppose that (g, L) is such that diog = 0. If \;j = 0, in an

oM
arbitrary neighbourhood of g one can find a metric ¢’ such that X;j’aM # 0. An

. . %g.. . g’
appropriate small perturbation of Biy which does not change ggj Jij

and

. oM oM
will then make ¢1,s non-zero, which shows density of X . O






APPENDIX B

1. “Almost Gaussian” coordinates.

Consider a metric g € C¥**(M); if k > 2 Gauss coordinates near OM can
be introduced. Namely, 1) there exists a finite cover {U;}/_, of OM and zy > 0
such that U/_;[0,z9) x U; is a neighbourhood of M and 2) in local coordinates
y = (z,v4), x € [0,20),v" € U; we have

97 = gldy', dy’) € C*>T((0,20) x Uy), (1.1)

@F*=1, ¢ =o. (1.2)

The problem is, that the coordinates (z,v) above are obtained through a solution
of the geodesic equation, which leads to the threshold k > 2, and which for k < oo
leads to the loss of differentiability of ¢ in the new coordinate system, as emphasized
in eq. (1.1). This loss of differentiability is quite annoying, as then the use of exact
Gauss coordinates in various applications leads to stronger restrictions on the degree
of differentiability of the metric. On the other hand, for many applications it is
sufficient for (1.2) to hold only approximately near M. The aim of this Appendix
is to show that this can be achieved without losing differentiability of ¢*J. More
precisely, we have the following:

PRrROPOSITION 1.1 (“Almost Gaussian Coordinates at 0M”). Let 0 < k < oo,
A € [0,1], consider a Riemannian metric g € C¥T*(M) on M, with 9M — compact.
There exists o > 0 and a finite cover {U;}{_, of M together with coordinates
(y') = (z,v4) € [0,20] x U;, such that UI_; [0, z0] x U; is a neighbourhood of OM,
and such that

g(dyt,dy?) = g¥ € CFA((0,30) x U;), (1.3)
g(dz,dz) — 1 = o(z"), (1.4)
g(dz, dv?) = o(z"). (1.5)

REMARK: If A > 0, (1.4) — (1.5) can be strengthened to ¢g** — 1 = O(xF*+?),
ng — O(l,kJr)\).

Proor: If k = oo we can use Gauss coordinates near OM, and the result
follows. Suppose thus that & < oo, let p € M, let O be any conditionally
compact coordinate neighbourhood of M in which O N dM = {x = 0}, with
g = g(dy',dy’) € C***(0). Passing to a subset of O if necessary without loss
of generality we may assume O =~ [0,z9) x U, U C OM. Coordinate systems of
this form will be called cylindrical. By Lemma 3.1 there exists z € C*"1+A (1)
satisfying

oz rxr\—1/2 =
%IZO_(g ) /’ xa::O_O.
101
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The implicit function theorem implies that there exists O; C O such that (Z,v)
are coordinates on 01, O; being cylindrical in the coordinates (zZ,v). We also have
§°%|3=0 = 9(dz,dT)|s—0 = ¢""(9Z)?|s—0 = 1. Passing to the coordinates (z,v),
dropping the “1” on O; and dropping bars on Z and on g** we thus have

g =1. (1.6)
z=0
Let ¢, f4 € CEH142(0), consider
7=+ 6(z,v), (1.7)
vt = vt 4+ fA(w,0), (1.8)
hence
e = g2 2 4 g 85 25 09
. A . .. A
g4 = g(dz, dv?) = g"A + g" O + gA D8 4 g1 D4 015 (1.10)
Suppose that for some ¢ > 0 we have
g** —1=o(z"), ¢* =o(z'"). (1.11)

It follows from (1.6) that (1.11) holds with £ = 0. By Lemma 3.1 there exists
fA € CFIHX(O) satisfying
al—i—lfA 8£ng

&T”l =0 - 8# w:O’
while all the lower order 2—derivatives of f4 vanish at 2 = 0. Passing to coordinates

(z,7) on a (possibly smaller) cylindrical neighbourhood O, and dropping bars, one
finds from (1.9)—(1.10) that (1.10) still holds with, moreover

g°4 = o(a"), (1.12)
so that for £ = k = 0 the proof is completed. If 0 < ¢ < k by Lemma 3.1 there
exists ¢ € C*H1+2(Q) such that

8€+1¢ alg:cA
ox  lz=0 - or m:O7
with all the lower order z—derivatives of ¢ vanishing at * = 0. Passing to the

coordinates (Z,v) and dropping the bar on Z one finds that (1.11) holds with ¢
replaced by £+ 1, and the induction step is completed. O
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